Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation

828 篇文章 3 订阅

已下架不支持订阅

5 篇文章 1 订阅
本文研究了数据污染对GPT3.5在文本到SQL转换任务中的影响,发现GPT-3.5在不熟悉的Termite数据集上性能显著下降,揭示了数据污染可能导致高估LLM的性能。实验表明,GPT-3.5对Spider数据集有先验知识,而在新数据集上表现不佳,强调了数据污染问题。对抗性表断开连接的分析显示,其对不同数据集的影响不同。建议需要更全面地重新评估零样本场景下LLM的基准,并开发不受预训练影响的新数据集。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation》的翻译。

摘要

理解文本描述以生成代码似乎是在零样本场景中实现的指令-遵循大型语言模型(LLM)的能力。然而,这种翻译能力极有可能受到看到目标文本描述和相关代码的影响。这种影响被称为数据污染。
在这项研究中,我们研究了数据污染对GPT3.5在文本到SQL代码生成任务中的性能的影响。因此,我们引入了一种新的方法来检测GPT中的数据污染,并使用已知的Spider数据集和我们新的不熟悉的数据集Termite来检查GPT-3.5的文本到SQL的性能。此外,我们通过对抗性表断开连接(ATD)方法分析了GPT-3.5对具有修改信息的数据库的有效性,通过从数据库中删除结构信息使Textto SQL任务复杂化。我们的结果表明,即使对ATD进行了修改,GPT-3.5在不熟悉的Termite数据集上的性能也会显著下降,这突出了数据污染对文本到SQL翻译任务中LLM的影响。

1 引言

2 背景

3 Text-to-SQL数据集

4

已下架不支持订阅

Abstract: Gas metal arc welding (GMAW) is a widely used welding process in various industries. One of the significant challenges in GMAW is to achieve optimal welding parameters and minimize defects such as spatter and porosity. In this paper, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes and provide insights for process optimization. Introduction: Gas metal arc welding (GMAW) is a welding process that uses a consumable electrode and an external shielding gas to protect the weld pool from atmospheric contamination. During the GMAW process, the metal transfer mode affects the weld quality and productivity. Three types of metal transfer modes are commonly observed in GMAW: short-circuiting transfer (SCT), globular transfer (GT), and spray transfer (ST). The selection of the transfer mode depends on the welding parameters, such as the welding current, voltage, and wire feed speed. The metal transfer mode can be observed using high-speed imaging techniques, which capture the dynamic behavior of the molten metal during welding. The interpretation of these images requires expertise and is time-consuming. To address these issues, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Methodology: We collected a dataset of metal-transfer images using a high-speed camera during the GMAW process. The images were captured at a rate of 5000 frames per second, and the dataset includes 1000 images for each transfer mode. We split the dataset into training, validation, and testing sets, with a ratio of 70:15:15. We trained a convolutional neural network (CNN) to classify the metal-transfer mode from the images. We used the ResNet50 architecture with transfer learning, which is a widely used and effective approach for image classification tasks. The model was trained using the categorical cross-entropy loss function and the Adam optimizer. Results: We achieved an accuracy of 96.7% on the testing set using our deep-learning-based approach. Our approach can accurately detect and classify the different types of metal-transfer modes in GMAW processes. Furthermore, we used the Grad-CAM technique to visualize the important regions of the images that contributed to the classification decision. Conclusion: In this paper, we proposed a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes with high accuracy. The proposed approach can provide insights for process optimization and reduce the need for human expertise in interpreting high-speed images. Future work includes investigating the use of our approach in real-time monitoring of the GMAW process and exploring the application of our approach in other welding processes.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值