本文是LLM系列文章,针对《Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation》的翻译。
文本到SQL翻译中大型语言模型数据污染的影响研究
摘要
理解文本描述以生成代码似乎是在零样本场景中实现的指令-遵循大型语言模型(LLM)的能力。然而,这种翻译能力极有可能受到看到目标文本描述和相关代码的影响。这种影响被称为数据污染。
在这项研究中,我们研究了数据污染对GPT3.5在文本到SQL代码生成任务中的性能的影响。因此,我们引入了一种新的方法来检测GPT中的数据污染,并使用已知的Spider数据集和我们新的不熟悉的数据集Termite来检查GPT-3.5的文本到SQL的性能。此外,我们通过对抗性表断开连接(ATD)方法分析了GPT-3.5对具有修改信息的数据库的有效性,通过从数据库中删除结构信息使Textto SQL任务复杂化。我们的结果表明,即使对ATD进行了修改,GPT-3.5在不熟悉的Termite数据集上的性能也会显著下降,这突出了数据污染对文本到SQL翻译任务中LLM的影响。