Distilling Large Language Models for Text-Attributed Graph Learning

828 篇文章 3 订阅

已下架不支持订阅

29 篇文章 2 订阅
22 篇文章 0 订阅
本文探讨如何将大型语言模型(LLM)的知识转移到局部图模型,用于文本属性图(TAG)学习。研究发现,尽管LLM在小样本和零样本学习中有优势,但存在可扩展性、成本和隐私问题。为此,提出了一种新框架,通过LLM教导的解释器模型,使图模型能够模仿LLM的推理,提高TAG学习效果。实验结果显示,该框架在四个数据集上平均提升了1.25%的性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Distilling Large Language Models for Text-Attributed Graph Learning》的翻译。

文本属性图学习的大型语言模型提取

摘要

文本属性图(TAG)是连接的文本文档的图。图模型可以有效地学习标签,但它们的训练在很大程度上依赖于人工注释标签,而在许多应用程序中,人工注释标签很少甚至不可用。大型语言模型(LLM)最近在小样本和零样本TAG学习方面表现出了显著的能力,但它们存在可扩展性、成本和隐私问题。因此,在这项工作中,我们专注于通过在TAG学习中提取LLM到局部图模型的能力,将LLM和图模型与其互补的优势协同起来。为了解决LLM(文本的生成模型)和图模型(图的判别模型)之间的固有差距,我们建议首先让LLM教授具有丰富文本基本原理的口译员,然后让学生模型在没有LLM文本基本原理情况下模仿口译员的推理。大量实验验证了我们提出的框架的有效性。

1 引言

2 相关工作

3 前言

4 方法

5 实验

6 结论

在本文中,我们提出了一

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值