本文是LLM系列文章,针对《Distilling Large Language Models for Text-Attributed Graph Learning》的翻译。
摘要
文本属性图(TAG)是连接的文本文档的图。图模型可以有效地学习标签,但它们的训练在很大程度上依赖于人工注释标签,而在许多应用程序中,人工注释标签很少甚至不可用。大型语言模型(LLM)最近在小样本和零样本TAG学习方面表现出了显著的能力,但它们存在可扩展性、成本和隐私问题。因此,在这项工作中,我们专注于通过在TAG学习中提取LLM到局部图模型的能力,将LLM和图模型与其互补的优势协同起来。为了解决LLM(文本的生成模型)和图模型(图的判别模型)之间的固有差距,我们建议首先让LLM教授具有丰富文本基本原理的口译员,然后让学生模型在没有LLM文本基本原理情况下模仿口译员的推理。大量实验验证了我们提出的框架的有效性。
1 引言
2 相关工作
3 前言
4 方法
5 实验
6 结论
在本文中,我们提出了一