本文是LLM系列文章,针对《Think Twice Before Assure: Confidence Estimation for Large Language Models through Reflection on Multiple Answers》的翻译。
摘要
旨在评估输出可信度的置信度估计对于大型语言模型(LLM)的应用至关重要,尤其是黑匣子模型。由于LLM对其生成的不正确答案过于自信,LLM的现有置信度估计通常不会被校准。解决过度自信问题的现有方法受到一个重大限制的阻碍,即它们仅考虑LLM生成的一个答案的置信度。为了解决这一限制,我们提出了一种新的范式,该范式全面评估多个候选答案的可信任性,以减轻对错误答案的过度自信。基于这一范式,我们引入了一个两步框架,该框架首先指示LLM反映并提供每个答案的理由,然后聚合综合置信度估计的理由。该框架可以与现有的置信度估计方法集成,以实现卓越的校准。在三个任务的六个数据集上的实验结果证明了所提出的框架的合理性和有效性。