Probing Representation Forgetting in Supervised and Unsupervised Continual Learning

本文是LLM系列文章,针对《Probing Representation Forgetting in Supervised and Unsupervised Continual Learning》的翻译。

有监督与无监督连续学习中的表征遗忘探究

摘要

持续学习(CL)研究通常侧重于解决神经网络中的灾难性遗忘现象。灾难性遗忘与当任务或更广泛地说是数据分布受到变化训练时,模型先前学习的知识突然丢失有关。在监督学习问题中,这种由模型表示的变化引起的遗忘通常是通过评估旧任务性能的下降来测量或观察的。然而,模型的表示可以在不丢失有关先前任务的知识的情况下进行更改。在这项工作中,我们考虑了表示遗忘的概念,通过使用最佳线性分类器在引入新任务之前和之后的性能差异来观察。使用该工具,我们重新审视了一些标准的持续学习基准,并观察到,通过这一视角,在没有任何明确控制遗忘的情况下训练的模型表征通常会经历小的表征遗忘,有时可以与明确控制忘记的方法相比较,尤其是在较长的任务序列中。我们还表明,表征遗忘可以导致对持续学习中使用的模型容量和损失函数的影响的新见解。基于我们的结果,我们表明,一种简单但有竞争力的方法是通过标准监督的对比学习不断学习表征,同时在对旧样本进行查询时构建类样本的原型。

1 引言

2 相关工作

3 背景和方法</

### 探查大型语言模型 (LLM) 的特性与应用 #### 特性分析 大型语言模型(LLM)展示了显著的能力,在处理自然语言理解、生成和其他复杂的认知任务方面表现出色。然而,为了更好地理解和优化这些模型的行为,需要开发更为全面和细致的评估框架[^1]。 #### 安全性和伦理考量 鉴于 LLM 可能带来的潜在风险,确保其行为符合人类价值观和道德规范至关重要。为此,有必要设计更有效的安全对齐协议,以保障 LLM 在实际应用场景中的安全性。 #### 跨模态能力 Time-LLM 提供了一个具体的例子,说明如何通过跨模态适应和对齐增强 LLM 的性能。该方法不仅依赖于预训练的语言模型,还融合了特定领域的知识以及具体任务的需求,从而提高了预测的质量[^3]。 #### 技术基础与发展历程 GPT系列模型代表了一种典型的大规模预训练架构演进路径,从早期版本逐步迭代至当前最先进的变体。这一过程伴随着计算资源投入的增长和技术突破,使得模型能够学习到更加丰富的语义表示[^2]。 #### 正则化技术的作用 在构建高效稳定的 LLM 过程中,L1 和 L2 正则化扮演着重要角色。前者倾向于创建稀疏权重分布,有利于减少不必要的参数;后者则有助于维持合理的参数尺度,避免过拟合现象的发生[^4]。 ```python import torch.nn as nn class RegularizedModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, l1_lambda=0.01, l2_lambda=0.01): super(RegularizedModel, self).__init__() self.fc = nn.Linear(input_dim, hidden_dim) self.out = nn.Linear(hidden_dim, output_dim) self.l1_lambda = l1_lambda self.l2_lambda = l2_lambda def forward(self, x): h = torch.relu(self.fc(x)) y_pred = self.out(h) return y_pred def regularization_loss(self): l1_reg = sum(param.abs().sum() for param in self.parameters()) l2_reg = sum((param ** 2).sum() for param in self.parameters()) return self.l1_lambda * l1_reg + self.l2_lambda * l2_reg ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值