本文是LLM系列文章,针对《XLand-100B: A Large-Scale Multi-Task Dataset for In-Context Reinforcement Learning》的翻译。
XLand-100B:一个用于上下文强化学习的大规模多任务数据集
摘要
随着上下文内学习范式在大规模语言和计算机视觉模型中的成功,最近出现的上下文内强化学习领域正在经历快速增长。然而,由于缺乏具有挑战性的基准,它的开发受到了阻碍,因为所有实验都是在简单的环境和小规模的数据集上进行的。我们提出了XLand-100B,这是一个基于XLand-MiniGrid环境的大规模上下文强化学习数据集,作为缓解这一问题的第一步。它包含了近3万个不同任务的完整学习历史,涵盖了100B的过渡和2.5B的情节。收集数据集需要5万个GPU小时,这超出了大多数学术实验室的能力范围。除了数据集,我们还提供了进一步复制或扩展数据集的实用程序。通过这一重大努力,我们的目标是使快速发展的情境强化学习领域的研究民主化,并为进一步扩大规模提供坚实的基础。该代码是开源的,并在Apache 2.0许可证下提供,网址为https://github.com/dunno-lab/xland-minigrid-datasets.