本文是LLM系列文章,针对《DYNAMIC GENERATION OF PERSONALITIES WITH LARGE LANGUAGE MODELS》的翻译。
摘要
在模仿人类思考的领域,大型语言模型(LLM)显示出有前景的性能,从而放大了这一研究领域的重要性。思考既受到逻辑的影响,也受到个性的影响。然而,以往的研究主要集中在LLMs的逻辑上,忽视了对人格方面的探索。在这项工作中,我们介绍了一种基于超网络的动态人格生成方法——动态人格生成(DPG)。最初,我们将五大人格理论嵌入GPT-4中,形成一个人格评估机器,使其能够从对话中自动评估角色的人格特征。基于这种评价方法,我们提出了一种新的指标来评估人格生成能力。然后,我们使用这个性格评估机器来评估脚本数据中的对话,从而得到一个性格对话数据集。最后,我们在人格对话数据集上微调DPG。实验证明,对该数据集进行微调后,DPG的人格生成能力比传统的微调方法更强,超过了基于提示的GPT-4。