ChatGLM-RLHF: Practices of Aligning Large Language Models with Human Feedback

本文是LLM系列文章,针对《ChatGLM-RLHF: Practices of Aligning Large Language Models with Human Feedback》的翻译。

ChatGLM RLHF:将大型语言模型与人类反馈对齐的实践

摘要

ChatGLM是一个免费使用的人工智能服务,由ChatGLM系列大型语言模型(LLM)提供支持。在本文中,我们提出了ChatGLM RLHF管道——一种从人类反馈中强化学习(RLHF)的系统——旨在增强ChatGLM与人类偏好的一致性。ChatGLM RLHF包括三个主要组成部分:收集人类偏好数据、训练奖励模型和优化政策。在将ChatGLM RLHF集成到生产中的整个过程中,我们遇到并解决了几个前所未有的挑战。我们介绍了减轻稳定大规模训练的奖励方差的策略,通过融合梯度下降实现模型并行,并设计正则化约束以避免LLM中的灾难性遗忘。实验表明,与监督微调(SFT)版本的ChatGLM相比,ChatGLM RLHF在对准任务方面有了显著改进。例如,在中国对齐任务中,它平均比ChatGLM SFT多赢得15%的胜利。这项工作介绍了我们将LLM与人类偏好相结合的实践,为RLHF实施中的挑战和解决方案提供了见解。

1 引言

2 相关工作

3 ChatGLM-R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值