本文是LLM系列文章,针对《ChatGLM-RLHF: Practices of Aligning Large Language Models with Human Feedback》的翻译。
摘要
ChatGLM是一个免费使用的人工智能服务,由ChatGLM系列大型语言模型(LLM)提供支持。在本文中,我们提出了ChatGLM RLHF管道——一种从人类反馈中强化学习(RLHF)的系统——旨在增强ChatGLM与人类偏好的一致性。ChatGLM RLHF包括三个主要组成部分:收集人类偏好数据、训练奖励模型和优化政策。在将ChatGLM RLHF集成到生产中的整个过程中,我们遇到并解决了几个前所未有的挑战。我们介绍了减轻稳定大规模训练的奖励方差的策略,通过融合梯度下降实现模型并行,并设计正则化约束以避免LLM中的灾难性遗忘。实验表明,与监督微调(SFT)版本的ChatGLM相比,ChatGLM RLHF在对准任务方面有了显著改进。例如,在中国对齐任务中,它平均比ChatGLM SFT多赢得15%的胜利。这项工作介绍了我们将LLM与人类偏好相结合的实践,为RLHF实施中的挑战和解决方案提供了见解。