A Survey on LoRA of Large Language Models

227 篇文章 7 订阅 ¥99.90 ¥299.90
16 篇文章 0 订阅

本文是LLM系列文章,针对《A Survey on LoRA of Large Language Models》的翻译。

摘要

低秩自适应(LoRA)是一种性能最佳的参数高效微调范式,它使用可插拔的低秩矩阵更新密集的神经网络层。此外,它在跨任务泛化和隐私保护方面具有显著优势。因此,LoRA最近受到了广泛关注,相关文献的数量呈指数级增长。有必要对LoRA的当前进展进行全面概述。本次调查从以下角度对进展进行了分类和回顾:(1)改善LoRA在下游任务中表现的下游适应改进变体;(2) 混合多个LoRA插件以实现跨任务泛化的跨任务泛化方法;(3) 提高LoRA计算效率的效率改进方法;(4) 在联邦学习中使用LoRA的数据隐私保护方法;(5) 应用程序。此外,本次调查还讨论了该领域的未来发展方向。最后,我们提供了一个Github页面,供读者查看更新并就这篇调查论文展开讨论。

1 引言

2 低秩自适应 (LoRA)

3 下游自适应改进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值