本文是LLM系列文章,针对《A Survey on LoRA of Large Language Models》的翻译。
大型语言模型的LoRA研究综述
摘要
低秩自适应(LoRA)是一种性能最佳的参数高效微调范式,它使用可插拔的低秩矩阵更新密集的神经网络层。此外,它在跨任务泛化和隐私保护方面具有显著优势。因此,LoRA最近受到了广泛关注,相关文献的数量呈指数级增长。有必要对LoRA的当前进展进行全面概述。本次调查从以下角度对进展进行了分类和回顾:(1)改善LoRA在下游任务中表现的下游适应改进变体;(2) 混合多个LoRA插件以实现跨任务泛化的跨任务泛化方法;(3) 提高LoRA计算效率的效率改进方法;(4) 在联邦学习中使用LoRA的数据隐私保护方法;(5) 应用程序。此外,本次调查还讨论了该领域的未来发展方向。最后,我们提供了一个Github页面,供读者查看更新并就这篇调查论文展开讨论。