Let’s Verify Step by Step

本文是LLM系列文章,针对《Let’s Verify Step by Step》的翻译。

摘要

近年来,大型语言模型在执行复杂多步推理的能力方面有了很大提高。然而,即使是最先进的模型也经常出现逻辑错误。为了训练更可靠的模型,我们可以转向结果监督,为最终结果提供反馈,也可以转向过程监督,为每个中间推理步骤提供反馈。鉴于训练可靠模型的重要性,以及人工反馈的高昂成本,仔细比较这两种方法非常重要。最近的工作已经开始进行这种比较,但许多问题仍然存在。我们进行了自己的调查,发现过程监督在训练模型解决具有挑战性的MATH数据集中的问题方面明显优于结果监督。我们的过程监督模型解决了MATH测试集代表性子集中78%的问题。此外,我们发现主动学习显著提高了过程监督的效率。为了支持相关研究,我们还发布了PRM800K,这是一个包含80万步级人类反馈标签的完整数据集,用于训练我们的最佳奖励模型。

1 引言

2 方法

3 大规模监督

4 小规模合成监督

5 OOD泛化

6 讨论

7 相关工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值