Prometheus Chatbot: Knowledge Graph Collaborative Large Language Model for Computer Components

本文是LLM系列文章,针对《Prometheus Chatbot: Knowledge Graph Collaborative Large Language Model for Computer Components Recommendation》的翻译。

Prometheus Chatbot:用于计算机组件推荐的知识图谱协作大型语言模型

摘要

知识图谱 (KG) 在网络对齐、问答和推荐系统 (RS) 等应用中至关重要,因为它们提供结构化的关系数据,有助于推断间接关系。然而,开发能够以自然语言处理用户输入的基于 KG 的 RS 面临着重大挑战。首先,自然语言处理单元必须有效地处理人类语言中的歧义和可变性,以准确解释用户意图。其次,系统必须精确识别实体(如产品名称)并将其链接到 KG 中的相应节点。为了克服这些挑战,在联想的支持下,我们开发了一种新颖的聊天机器人“Prometheus”,将 KG 与大型语言模型 (LLM) 集成在一起,专门用于推荐计算机组件。该聊天机器人可

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
### 关于 chatbot_graph 的安装方法或教程 目前提供的引用内容中并未直接提及 `chatbot_graph` 的安装方法或教程。然而,可以结合相关技术背景和常见实践来推测可能的解决方案。 #### 1. 确认依赖环境 在安装任何软件包之前,通常需要确保系统已安装必要的依赖项。对于基于 Python 的项目(如 `chatbot_graph`),以下步骤通常是必需的: - 安装 Python 环境(建议版本为 3.7 或更高)。 - 使用虚拟环境隔离依赖项以避免冲突: ```bash python -m venv venv source venv/bin/activate # 在 Windows 上使用 `venv\Scripts\activate` ``` #### 2. 搜索官方文档或 GitHub 仓库 通常,开源项目的安装指南会提供在官方文档或其 GitHub 仓库的 README 文件中。可以通过以下方式查找 `chatbot_graph` 的安装教程: - 访问 [PyPI](https://pypi.org/) 并搜索 `chatbot_graph`[^1]。 - 如果未找到 PyPI 包,尝试访问 GitHub 或其他代码托管平台,搜索 `chatbot_graph` 的仓库。 #### 3. 使用 pip 进行安装 如果 `chatbot_graph` 是一个可用的 Python 包,可以通过 `pip` 进行安装。例如: ```bash pip install chatbot_graph ``` 如果该命令失败,则可能需要手动克隆仓库并安装依赖项。例如: ```bash git clone https://github.com/<username>/chatbot_graph.git cd chatbot_graph pip install -r requirements.txt python setup.py install ``` #### 4. 配置与运行 安装完成后,通常需要进行一些配置才能运行 `chatbot_graph`。这可能包括: - 加载数据集或知识图谱文件。 - 配置模型参数或超参数。 - 启动服务或测试脚本。 #### 示例代码片段 以下是一个假设的示例,展示如何加载和初始化 `chatbot_graph`: ```python from chatbot_graph import ChatbotGraph # 初始化知识图谱聊天机器人 chatbot = ChatbotGraph(knowledge_graph_path="data/kg.json") # 测试对话 response = chatbot.generate_response("我想组装一台电脑,请推荐配置") print(response) ``` #### 注意事项 如果没有找到明确的 `chatbot_graph` 安装教程,可能需要进一步确认该项目是否存在或是否公开发布。此外,参考类似项目(如 Prometheus Chatbot[^3])的实现细节,可能会提供有价值的线索。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值