主要内容总结
本文提出了一种名为ReaLM的算法/电路协同设计框架,旨在通过利用大型语言模型(LLM)的固有容错性,实现高效且可靠的LLM推理。主要贡献包括:
- 系统性容错分析:通过大规模错误注入实验,首次系统分析了LLM的容错特性,发现归一化操作后的网络组件对错误更为敏感,且错误频率与幅度之间存在权衡关系。
- 统计ABFT算法:提出基于统计的ABFT(算法级容错)方法,结合定制化低功耗错误检测电路,自适应地仅在关键错误区域触发恢复,从而减少不必要的计算开销。
- 能效优化:通过动态调整电压和利用LLM的容错性,在保持模型性能的同时,实现最高35.83%的能效提升。
创新点
- 首次系统性分析LLM容错性:揭示了LLM不同组件(如归一化层前后)的容错性差异,并发现错误频率与幅度对性能的非线性影响。
- 统计ABFT算法:结合错误统计(如错误频率和幅度)动态调整容错策略,减少冗余恢复操作