ReaLM: Reliable and Efficient Large Language Model Inference with Statistical Algorithm-Based Fault

主要内容总结

本文提出了一种名为ReaLM的算法/电路协同设计框架,旨在通过利用大型语言模型(LLM)的固有容错性,实现高效且可靠的LLM推理。主要贡献包括:

  1. 系统性容错分析:通过大规模错误注入实验,首次系统分析了LLM的容错特性,发现归一化操作后的网络组件对错误更为敏感,且错误频率与幅度之间存在权衡关系。
  2. 统计ABFT算法:提出基于统计的ABFT(算法级容错)方法,结合定制化低功耗错误检测电路,自适应地仅在关键错误区域触发恢复,从而减少不必要的计算开销。
  3. 能效优化:通过动态调整电压和利用LLM的容错性,在保持模型性能的同时,实现最高35.83%的能效提升。

创新点

  1. 首次系统性分析LLM容错性:揭示了LLM不同组件(如归一化层前后)的容错性差异,并发现错误频率与幅度对性能的非线性影响。
  2. 统计ABFT算法:结合错误统计(如错误频率和幅度)动态调整容错策略,减少冗余恢复操作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值