LLM4FS: Leveraging Large Language Models for Feature Selection and How to Improve It

在这里插入图片描述

文章主要内容总结:

本文探讨了利用大型语言模型(LLMs)进行特征选择的潜力,并提出了一种名为LLM4FS的混合策略。主要内容包括:

  1. LLM性能评估:对比了DeepSeek-R1、GPT-o3mini和GPT-4.5在特征选择任务中的表现,发现DeepSeek-R1与GPT-4.5性能接近,且成本更低。
  2. 混合策略LLM4FS:通过让LLM直接调用传统数据驱动方法(如随机森林、前向/后向选择等),结合LLM的语义推理能力和传统方法的统计可靠性,显著提升特征选择效果。
  3. 实验验证:在四个公开数据集(Bank、Credit-G、Pima Indians Diabetes、Give Me Some Credit)上验证了LLM4FS的有效性,其性能优于纯LLM方法和传统方法。
  4. 挑战与展望:指出LLM在隐私保护、稳定性及与结构化模型结合等方面的不足,并提出未来研究方向(如联邦学习、基础特征工程模型等)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值