Adopting Large Language Models to Automated System Integration

主要内容

  1. 研究背景:现代企业计算系统集成众多子系统,自动服务组合可减少人工、加快上市并适应业务变化。传统方法依赖复杂形式建模,LLMs的出现为自动服务组合提供新途径,研究旨在探究LLMs在自动服务组合中的应用效果。
  2. 研究方法:提出Compositio Prompto软件架构,分析RAG用于服务发现,引入基于自然语言查询的服务发现基准SOCBench-D,并扩展到完整服务组合场景。通过现有RestBench基准和自定义SOCBench-D基准评估RAG分块策略和嵌入模型。
  3. 研究结果:Compositio Prompto架构实验表明大模型能完美解决部分任务,小模型也能给出近似解。扩展Lemos分类法,验证新子类的必要性。RAG应用显示按端点拆分OpenAPI有益,不同嵌入模型性能有差异。
  4. 未来工作:分析包含RAG服务发现的完整服务组合,通过代码分析创建基准,衡量对开发时间节省、可持续性的影响,研究LLM代理等先进方法。

创新点

  1. 架构创新:提出Compositio Prompto软件架构,利用LLMs实现自动服务组合,以任务、服务文档和输入输出模式创建提
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值