HDU 5212 Code(容斥 或 莫比乌斯反演)

题意:给出n个数,求gcd(a[i], a[j]) * gcd(a[i], a[j] - 1)的和(1 <= i, j <= n)。

分析:首先,我们分析每个数对最终答案的影响。
那么我们就要求出:对于每个数,以它为 gcd 的数对有多少对。
显然,对于一个数 x ,以它为 gcd 的两个数一定都是 x 的倍数。如果 x 的倍数在数列中有 k 个,那么最多有 k^2 对数的 gcd 是 x 。

同样显然的是,对于两个数,如果他们都是 x 的倍数,那么他们的 gcd 一定也是 x 的倍数。

所以,我们求出 x 的倍数在数列中有 k 个,然后就有 k^2 对数满足两个数都是 x 的倍数,这 k^2 对数的 gcd,要么是 x ,要么是 2x, 3x, 4x...

并且,一个数是 x 的倍数的倍数,它就一定是 x 的倍数。所以以 x 的倍数为 gcd 的数对,一定都包含在这 k^2 对数中。

如果我们从大到小枚举 x ,这样计算 x 的贡献时,x 的多倍数就已经计算完了。我们用 f(x) 表示以 x 为 gcd 的数对个数。

那么 f(x) = k^2 - f(2x) - f(3x) - f(4x) ... f(tx)       (tx <= 10000, k = Cnt[x])

这样枚举每个 x ,然后枚举每个 x 的倍数,复杂度用调和级数计算,约为 O(n logn)。 


#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

const int MaxN = 1e4 + 10;
const int Mod = 10007;

int cnt[MaxN], F[MaxN];

int main() {
    int n, a;
    while(~scanf("%d", &n)) {
        memset(cnt, 0, sizeof(cnt));
        for(int i = 0; i < n; i++) {
            scanf("%d", &a);
            for(int j = 1; j * j <= a; j++) {
                if(a % j == 0) {
                    cnt[j]++;
                    if(j * j != a)
                        cnt[a / j]++;
                }
            }
        }
        int ans = 0;
        for(int i = 10000; i >= 1; i--) {
            F[i] = cnt[i] * cnt[i] % Mod;
            for(int j = i * 2; j <= 10000; j += i)
                F[i] = (F[i] - F[j] + Mod) % Mod;
            int p = i * (i - 1) % Mod;
            ans = (ans + p * F[i] % Mod) % Mod;
        }
        printf("%d\n", ans);
    }
    return 0;
}



分析:

同样我们设 
f(d) :满足 gcd(x,y)=d x,y 均在给定范围内的 (x,y) 的对数。 
F(d) :满足 d|gcd(x,y) x,y 均在给定范围内的 (x,y) 的对数。 
反演后我们得到

f(x)=x|dμ(d/x)F(d)

由于序列给定,这里的 F(d) 我们可以通过枚举 d ,来找 d 的倍数的个数,那么 F(d)=cnt[d]cnt[d] ,枚举最大公约数求出 f(d) ,那么答案即为 f(d)d(d1) 的和。时间复杂度 O(nlogn)
/*
-- Hdu 5212
-- mobius
-- Create by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 1e4+ 5 , mod = 1e4 + 7;
int tot = 0;
int miu[maxn], prime[maxn], a[maxn];
int cnt[maxn], F[maxn];
bool flag[maxn];
void mobius()
{
    miu[1] = 1;
    tot = 0;
    for(int i = 2; i < maxn; i++){
        if(!flag[i]){
            prime[tot++] = i;
            miu[i] = -1;
            cnt[i] = 1;
        }
        for(int j = 0; j < tot && i * prime[j] < maxn; j++){
            flag[i * prime[j]] = true;
            cnt[i * prime[j]] = cnt[i] + 1;
            if(i % prime[j]){
                miu[i * prime[j]] = -miu[i];
            }
            else{
                miu[i * prime[j]] = 0;
                break;
            }
        }
    }
}
int main (void)
{
    mobius();
    int n;
    while(~sa(n)){
        int maxa = 0;
        memset(cnt, 0, sizeof(cnt));
        memset(F, 0, sizeof(F));
        for(int i = 0; i < n; i++) {
            sa(a[i]);
            cnt[a[i]]++;
            maxa = max(maxa, a[i]);
        }
        for(int i = 1; i <= maxa; i++){
            for(int j = i; j <= maxa; j += i){
                F[i] += cnt[j];
            }
        }
        ll ans = 0;
        ll tmp = 0;
        for(int i = 1; i <= maxa; i++){
            tmp = 0;
            for(int j = i; j <= maxa; j += i){
                 tmp += miu[j/ i]  *  F[j] * 1ll * F[j] % mod;
            }
            ans =( ans + tmp * 1ll * i % mod * (i  - 1)% mod) % mod;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}



  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值