一道比较明显的公式题
给的参数很少,数值也不大(≤500/≤20)
题意大致是:进行K次染色,每次染色会随机选取一个以(x1,y1),(x2,y2)为一组对角的子矩阵进行染色,求K次染色后染色面积的期望值(四舍五入)。
- 样例1:(n,m,k)=(3,3,1)
- Case #1: 4
- (这组样例中,每一种可能染色方案的面积总和为289,染色的方案数共有n*n*m*m=3^4=81种,因此期望为3.56790123,四舍五入后答案为4)
显而易见的是,当K=1时,期望被染色的面积会等于每个1*1的方块被染色的期望累加之和。
假设K=1时即只染色一次时,位于第x行第y列的方块被染色的概率为A[x,y]
在K次操作后被染色的期望假设为P[x,y],可以用
来计算。
此时我们的问题转向了如何计算A[x.y]上
由题目描述,一次染色中可能的操作有n^2*m^2种
计算A[x,y]时,我们可以把整个矩阵做如下拆分
当前计算的方块为[x,y],即图中编号为5的部分
将其他部分拆分成图上8个区域,则可得到以下关系
- 对于一种染色方案能够覆盖方块[x,y]时
- ①[x1,y1]取在区域1内时,[x2,y2]可以在5、6、8、9四个区域内任取;
- ②[x1,y1]取在区域2内时,[x2,y2]可以在4、5、6、7、8、9六个区域内任取;
- ③[x1,y1]取在区域3内时,[x2,y2]可以在4、5、7、8四个区域内任取;
- ④[x1,y1]取在区域4内时,[x2,y2]可以在2、3、5、6、8、9六个区域内任取;
- ⑤[x1,y1]取在区域5内时,[x2,y2]可以在所有区域内任取;
- ⑥[x1,y1]取在区域6内时,[x2,y2]可以在1、2、4、5、7、8六个区域内任取;
- ⑦[x1,y1]取在区域7内时,[x2,y2]可以在2、3、5、6四个区域内任取;
- ⑧[x1,y1]取在区域8内时,[x2,y2]可以在1、2、3、4、5、6六个区域内任取;
- ⑨[x1,y1]取在区域1内时,[x2,y2]可以在1、2、4、5四个区域内任取;
按照这个关系,即可推出A[x,y]的表达式。
P.S.:本题因为计算过程中会出现n^2*m^2大小的计算,因此需要注意int溢出的问题
- #include<iostream>
- #include<cstdio>
- #include<cmath>
- using namespace std;
-
- int main()
- {
- int t,tm,k;
- double n,m;
- scanf("%d",&t);tm=t;
- while(t--)
- {
- scanf("%lf%lf%d",&n,&m,&k);
- double ans=0;
- for(double i=1;i<=n;i++)
- for(double j=1;j<=m;j++)
- {
- double p=m*n;
- p+=(i-1)*(j-1)*(n-i+1)*(m-j+1);
- p+=(i-1)*(m-j)*(n-i+1)*j;
- p+=(j-1)*(n-i)*(m-j+1)*i;
- p+=(n-i)*(m-j)*i*j;
- p+=(i-1)*m*(n-i+1);
- p+=(m-j)*n*j;
- p+=(n-i)*m*i;
- p+=(j-1)*n*(m-j+1);
- p=p/n/n/m/m;
- ans+=1-(pow(1-p,k));
- }
- printf("Case #%d: %d\n",tm-t,int(ans+0.5));
- }
- return 0;
- }