写在前面:
树的可视化(代码2)需要借助一些包,请提前安装(代码1不需要,只要python环境即可)
from collections import Iterable
import networkx as nx
import matplotlib.pyplot as plt
1.创建二叉树
class TreeNode:
'''二叉搜索树节点的定义'''
def __init__(self, val):
self.val = val
self.left = None
self.right = None
class OperationTree:
'''二叉搜索树操作'''
def insert(self, root, val):
'''二叉搜索树插入操作'''
if root == None:
root = TreeNode(val)
elif val < root.val:
root.left = self.insert(root.left, val)
elif val > root.val:
root.right = self.insert(root.right, val)
return root
def query(self, root, val):
'''二叉搜索树查询操作'''
if root == None:
return False
if root.val == val:
return True
elif val < root.val:
return self.query(root.left, val)
elif val > root.val:
return self.query(root.right, val)
def findMin(self, root):
'''查找二叉搜索树中最小值点'''
if root.left:
return self.findMin(root.left)
else:
return root
def findMax(self, root):
'''查找二叉搜索树中最大值点'''
if root.right:
return self.findMax(root.right)
else:
return root
def delNode(self, root, val):
'''删除二叉搜索树中值为val的点'''
if root == None:
return
if val < root.val:
root.left = self.delNode(root.left, val)
elif val > root.val:
root.right = self.delNode(root.right, val)
# 当val == root.val时,分为三种情况:只有左子树或者只有右子树、有左右子树、即无左子树又无右子树
else:
if root.left and root.right:
# 既有左子树又有右子树,则需找到右子树中最小值节点
temp = self.findMin(root.right)
root.val = temp.val
# 再把右子树中最小值节点删除
root.right = self.delNode(root.right, temp.val)
elif root.right == None and root.left == None:
# 左右子树都为空
root = None
elif root.right == None:
# 只有左子树
root = root.left
elif root.left == None:
# 只有右子树
root = root.right
return root
def printTree(self, root):
# 打印二叉搜索树(中序打印,有序数列)
if root == None:
return
self.printTree(root.left)
print(root.val, end = ' ')
self.printTree(root.right)
if __name__ == '__main__':
List = [17,5,35,2,11,29,38,9,16,8]
root = None
op = OperationTree()
for val in List:
root = op.insert(root,val)
print('中序打印二叉搜索树:', end = ' ')
op.printTree(root)
print('')
print('根节点的值为:', root.val)
print('树中最大值为:', op.findMax(root).val)
print('树中最小值为:', op.findMin(root).val)
print('查询树中值为5的节点:', op.query(root, 5))
print('查询树中值为100的节点:', op.query(root, 100))
print('删除树中值为16的节点:', end = ' ')
root = op.delNode(root, 16)
op.printTree(root)
print('')
print('删除树中值为5的节点:', end = ' ')
root = op.delNode(root, 5)
op.printTree(root)
print('')
2.树结构的可视化
class Node:
def __init__(self, value, left=None, right=None):
self.value = value # 节点的值
self.left = left # 左子节点
self.right = right # 右子节点
from collections import Iterable
class BinaryTree:
def __init__(self, seq=()):
assert isinstance(seq, Iterable) # 确保输入的参数为可迭代对象
self.root = None
self.insert(*seq)
def insert(self, *args):
if not args:
return
if not self.root:
self.root = Node(args[0])
args = args[1:]
for i in args:
seed = self.root
while True:
if i > seed.value:
if not seed.right:
node = Node(i)
seed.right = node
break
else:
seed = seed.right
else:
if not seed.left:
node = Node(i)
seed.left = node
break
else:
seed = seed.left
def minNode(self):
node = self.root
while node.left:
node = node.left
return node
def maxNode(self):
node = self.root
while node.right:
node = node.right
return node
import networkx as nx
import matplotlib.pyplot as plt
def create_graph(G, node, pos={}, x=0, y=0, layer=1):
pos[node.value] = (x, y)
if node.left:
G.add_edge(node.value, node.left.value)
l_x, l_y = x - 1 / 2 ** layer, y - 1
l_layer = layer + 1
create_graph(G, node.left, x=l_x, y=l_y, pos=pos, layer=l_layer)
if node.right:
G.add_edge(node.value, node.right.value)
r_x, r_y = x + 1 / 2 ** layer, y - 1
r_layer = layer + 1
create_graph(G, node.right, x=r_x, y=r_y, pos=pos, layer=r_layer)
return (G, pos)
def draw(node): # 以某个节点为根画图
graph = nx.DiGraph()
graph, pos = create_graph(graph, node)
fig, ax = plt.subplots(figsize=(8, 10)) # 比例可以根据树的深度适当调节
nx.draw_networkx(graph, pos, ax=ax, node_size=300)
plt.show()
if __name__ == '__main__':
List = [17,5,35,2,11,29,38,9,16,8]
tree = BinaryTree()
tree.insert(*List)
draw(tree.root)