二叉树

二叉树的优势

       在实际使用时会根据链表和有序数组等数据结构的不同优势进行选择。有序数组的优势在于二分查找,链表的优势在于数据项的插入和数据项的删除。但是在有序数组中插入数据就会很慢,同样在链表中查找数据项效率就很低。综合以上情况,二叉树可以利用链表和有序数组的优势,同时可以合并有序数组和链表的优势,二叉树也是一种常用的数据结构。

二叉树的构成

      二叉树由节点(node)和边组成。节点分为根节点、父节点、子节点。如下图所示:

这里写图片描述

      红色是根节点(root)。蓝色是子节点也是父节点,绿色的是子节点。其余的线是边。节点和链表中的节点一样都可以存放数据信息。树中的边可以用自引用表示,这种引用就是C/C++里面的指针。通常来说树是顶部小,底部大,且树呈分层结构。root节点时第0层,以此类推。二叉树最多有两个节点。

二叉树搜索

      二叉树一个节点左子节点的关键字小于这个节点,右子节点关键字大于或等于这个父节点。

创建一个树节点

      创建一个树节点包括左节点引用和右节点引用。

//创建一个树的节点
//每个node存放两个数据
//一个左node引用和一个右node引用
class Node
{
    public  int iData;
    public double dData;
    public Node leftNode;
    public Node rightNode;
    //显示树节点信息
    public void showNode()
    {
        System.out.println("{ "+iData+","+dData+" }");
    }
}

创建一个树结构

       创建一个树结构首先是向一个树种插入数据节点。当一棵树为null时,数据项是从树的root节点处开始插入,之后的插入顺序是根据搜索节点顺序规则进行插入。具体规则是:如果数据项比父节点的数据项要小,则插在父节点的左节点(leftNode),如果比父节点的数据项要大,则将新的node插入在父节点的右节点处(rightNode)。

private Node root;
    //插入Node
    //插入之前需要判断是否为null
    //为null需要比较大小直到currentNode为null就插入
    public void insert(int iData,double dData )
    {
        //创建node节点
        Node newNode=new Node();
        newNode.iData=iData;
        newNode.dData=dData;
        //判断root node是否为null
        if(root==null)
        {
            root=newNode;
        }
        //不为null
        else
        {
            Node current=root;
            Node parent;
            while(true)
            {
                parent=current;//保存当current变为null之前的那一个父节点
                if(iData<current.iData)//插入左节点
                {
                    current=current.leftNode;//不断向左node寻找是否为null
                    if(current==null)
                    {
                        parent.leftNode=newNode;
                        return;
                    }

                }
                //插入右节点
                else
                {
                    current=current.rightNode;
                    if(current==null)
                    {
                        parent.rightNode=newNode;
                        return;
                    }
                }

            }

        }
    }

以下图表示以上插入数据节点过程:

这里写图片描述

      在插入节点的过程中其实也就是对tree遍历的过程,最终根据条件遍历到左右节点为null时进行添加新的节点。

查找关键字

      查找关键字是数据结构一项重要操作项,在有序数组中通过二分排序效率非常高。在二叉树中的查找效率也比较高。因为二叉树的添加node的过程就是根据数据项的大小进行有序添加的,并不是毫无秩序的插入数据项。在有序的基础上进行查找关键字效率就会快很多。

//在tree中寻找关键字
    //返回一个Node
    //显示这个Node
    public Node find(int key)
    {
        Node current=root;
        while(current.iData!=key)
        {
            if(current.iData>key)
            {
                current=current.leftNode;
            }else
            {
                current=current.rightNode;
            }
            if(current==null)
                return null;
        }
        return current;
    }

树的最值查找

      树的最值查找在树中查找是比较容易的,因为从root开始查找,最小值只会出现所有父节点的左节点处,同样最大值只会出现在所有父节点的沿着右节点搜索的最底层右节点处。

//查找树中的最大值和最小值 
    //最小值存在于一棵树的最下层的最左node
    //最大值存在于一棵树的最下层的最右node
    public Node[] mVal()
    {
        Node minNode=null;
        Node maxNode=null;
        Node[] maxminVal=new Node[2];
        Node current=root;//从树的顶部开始搜索
        while(current!=null)
        {
            minNode=current;
            current=current.leftNode;   
        }
        maxminVal[0]=minNode;
        current=root;
        while(current!=null)
        {
            maxNode=current;
            current=current.rightNode;
        }
        maxminVal[1]=maxNode;
        return maxminVal;
    }

      以上是通过node数组存放两个最值,这样避免写两个方法,最后返回一个node数组。

对以上树的操作进行测试及结果:

Tree tree=new Tree();
        tree.insert(3, 3.666);
        tree.insert(1, 1.111);
        tree.insert(2, 2.362);
        tree.insert(4, 4.672);
        tree.insert(5, 5.865);
        tree.insert(6, 6.681);
        Node node=tree.find(6);
        if(node==null)
        {
            System.out.println("we can not find it");
        }else
        {
            node.showNode();
        }
        //查找tree中的最值
        Node[] temp=tree.mVal();
        temp[0].showNode();
        temp[1].showNode();
{ 6,6.681 }
{ 1,1.111 }
{ 6,6.681 }

      由于第一个插入节点就是在root节点处进行插入,不管其数据项大小,该节点都是root节点,处于树的最顶层。

  • 14
    点赞
  • 10
    收藏
  • 打赏
    打赏
  • 10
    评论
5.1 数的逻辑结构 5.1.1 1、树的定义 在树中常常将数据元素称为结点 (1)有且仅有一个特定的称为根的结点; (2)当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,•••Tm,其中每个集合又是一棵树,并称为这个节点的子树。 2、树的基本术语: 结点的度、树的度 叶子节点、分支结点 孩子节点、分支结点、兄弟节点 路径、路径长度 祖先、子孙 结点的层数、树的深度(高度) 层序编号 有序树、无序树 森林 5.1.2 树的抽象数据类型定义 5.1.3树的遍历操作 1、前序遍历 树的前序遍历操作定义为: 若树为空,则空操作返回;否则 (1)访问根结点 (2)按照从左向右的顺序前序遍历根结点的每一棵子树。 2、中序遍历 树的中序遍历操作定义为: 若树为空,则空操作返回;否则 (1)按照从左向右的顺序后序遍历根结点的每一棵子树; (2)访问根结点。 3、层序遍历 树的层序遍历也称作树的广泛遍历,其操作定义为树的第一层开始,自上而下逐层遍历,在同一层中,按从左向右的顺序对结点逐个访问。 5.2树的存储结构 5.2.1 双亲表示法 由树的定义可知,树中每个结点都有且仅有一个双亲结点。所以利用这一特性,可以用一维数组来存储各个结点,数组中一个元素对应一个结点,数组元素包括树中结点的数据信息以及该结点的双亲在数组中的下标。 其中: Data为数据域,存储树中结点的数据信息; Parent为指针即游标,存储该结点的双亲在数组中的小标。 5.2.2孩子表示法 1、多重链表表示法 (1)指针域的个数等于该结点的度。 (2)指针域的个数等于树的度。 2、孩子链表表示法 把孩子看成一个线性表,且以单链表存储,称为该结点的孩子链表。则n个结点有n个孩子链表。 孩子节点有两类:孩子节点、表头结点。 5.2.3 双亲孩子表示法 即将双亲表示法和孩子链表表示法相结合的存储方法。仍将各结点的孩子分别组成单链表,同时用一维数组顺序存储树中的各结点,数组元素除了包括结点的数据信息和该结点的孩子链表的头指针之外,还增设一个域存储该结点的双亲在数组的下标。 5.2.4孩子兄弟表示法 又称二链表表示法,其方法是链表中每个结点除数据域外,还设置了两个指针分别指向该结点的第一个孩子和右兄弟链表的结构: Firstchild data rightsib 指针域,存储第一个孩子结点的存储地址 数据域,存储该结点的数据信息 指针域,存储该结点右兄弟结点的存储地址 5.3二叉树的逻辑结构 最简单的树结构,特别适合计算机处理,而且任何数都可以简单的转换为二叉树。(重点内容) 5.3.1二叉树的定义 二叉树是n(n>=0)个结点的有限集合,该集合或者为空集,或者有一个根节点和两棵互不相交的、分别称为根节点的左子树和右子树的二叉树组成。 二叉树具有五种基本形态: 1、空二叉树; 2、只有一个根结点; 3、根结点只有左子树; 4、根结点只有右子树; 5、根结点既有左子树又有右子树 特殊二叉树: 1、斜树; 2、满二叉树; 3、完全二叉树; 5.3.2二叉树的基本性质 性质5-1 二叉树的第i层上最多有2^(i-1)个结点(i>=1)。 性质5-2 在一棵深度为k的二叉树中,最多有2^k-1个结点,最少有k个结点。 性质5-3 在一棵二叉树中,如果叶子结点的个数为n0,度为2的结点个数为n2,则n0=n2+1. 性质5-4 具有n个结点的完全二叉树的深度为【log2^n】+1。 性质5-5 对一棵具有n个结点的完全二叉树中的结点从一开始按层序编号,则对于任意的编号为i(1<=i<=n)的结点,有: (1)如果i>1,则结点i的双亲的编号为【i/2】;否则结点i是根结点,无双亲。 (2)如果2i<=n,则 结点i的左孩子的编号为2i;否则结点i无左孩子。 (3)如果2i+1<=n,则结点i的右孩子的编号为2i+1,否则结点i无右孩子。 5.3.3 二叉树的抽象数据类型定义 同树类似,在不同的应用中,二叉树的基本操作不尽相同。 5.3.4 二叉树的遍历操作 二叉树的遍历是指从根节点出发,按照某种次序访问二叉树是所有结点,使得每个结点被访问一次且仅被访问一次。由于二叉树中每个结点都可能有两个子树,因此需要寻找一条合适的搜索路径。 1、前序遍历 前序遍历二叉树操作定义为: 若树为空,则空操作返回;否则 (1)访问根结点 (2)前序遍历根结点的左子树 (3)前序遍历根结点的右子树 2、中序遍历 中序遍历二叉树操作定义为: 若树为空,则空操作返回;否则 (1)中序遍历根结点的左子树 (2)访问根结点 (3)中序遍历根结点的右子树 3、后序遍历 后序遍历根结点的左子树 后序遍历根结点的右子树 访问根结点 4、层序遍历 二叉树的层序遍历是指从二叉树的第一层开始,从上之下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。 5.4 二叉树存储结构及实现 5.4.1 顺序存储结构 具体步骤: (1)将二叉树按完全二叉树编号。 (2)将二叉树中的结点一编号顺序存储到一维数组中。 5.4.2 二叉链表 基本思想: 令二叉树的每个结点对应一个链表结点,链表结点除了存放于二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。 5.4.3 三叉链表 在二叉链表存储方式下,从某个结点出发可以直接访问它的孩子结点,但要找到它的双亲结点,则需要从根节点开始搜索,最坏的情况下,需要遍历整个二叉链表。此时采用三叉树链表储存二叉树。 其中,data,lchild,rchild三个域的含义同二叉树,parent域为指向该结点的双亲结点指针。 5.4.4 线索链表 按照某种遍历次序对二叉树进行遍历,可以把二叉树中所有结点排成一个线性序列。在集体应用中,有时需要访问二叉树中的结点在某种遍历序列中前驱和后继,此时,在存储结构中应该保存结点在某种遍历序列中的前驱和后继信息。 前驱和后继结点的指针称为线索,加上线索的二叉树称为线索二叉树,加上线索的二叉链表称为线索链表。 5.5 二叉树遍历的非递归算法 5.5.1 前序遍历非递归算法 关键:在前序遍历过某个左子树后,如何找到该结点的右子树的根指针。 一般的前序遍历执行过程中,设要遍历二叉树的根指针为bt,可能出现两种情况: (1)若bt!=NULL,则表明当前二叉树不为空,此时,应输入根结点bt的值并将bt保存到栈中,准备继续遍历bt的左子树。 (2)若bt=NULL,则表明以bt为根指针的二叉树遍历完毕,并且bt是栈顶指针所指结点的左子树,若栈不空,则应根据栈顶指针所指结点找到待遍历右子树的根指针并赋予bt,以继续遍历下去;若栈空,则表明整个二叉树遍历完毕。 5.5.2 中序遍历非递归算法 此算法只是需要将前序遍历的非递归算法中输出的语句cout<<bt->data移到bt=s[top--]之后即可。 5.5.3 后序遍历非递归算法 后序遍历的不同在于:结点要出入两次栈,出两次栈,这种情况的含义和处理方法为: (1)第一次出栈:只遍历晚左子树,右子树尚未遍历,则该结点不出栈,利用栈顶结点找到它的右子树,准备遍历它的右子树。 (2)第二次出栈:遍历完右子树,该结点出栈,并访问它。 设根指针为bt,则可能有以下两种情况: (1)若bt!=NULL,则bt及标志flag入栈,遍历其左子树。 (2)若bt=NULL,此时栈空,则整个遍历结束;若栈不空,则表明栈顶结点的左子树或右子树已遍历结束。若栈顶点的标志flag=1,则表明栈结点的左子树已遍历完毕,将flag修改为2,修改为2,并遍历栈定点的右子树;若栈顶结点的标志flag=2,则表明栈结点的右子树也遍历完毕,输出栈顶结点。 5.6 树、森林与二叉树的转换 1.树转换为二叉树 将一棵树转换为二叉树的方法为: (1)加线——树中所有相邻的兄弟结点之间加一条线; (2)去线——对树中的每个节点,只保留它与第一个孩子结点之间的连线,删去它与其他孩子结点之间的连线。 (3)层次调节——以根结点为轴心,将树顺时针转动一定角度,使之层次分明。 2.森林转换成二叉树 (1)将森林中的每一棵二叉树转化成二叉树; (2)从第二课二叉树开始,依次把后一棵二叉树的根结点作为一棵二叉树根节点的右孩子,当所有二叉树连起来后,此时所得到的二叉树就是由森林转换得到的二叉树。 3、二叉树转换为树或森林 (1)加线——若某个结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来; (2)去线——删去原二叉树中所有的双亲结点与右孩子结点的连线; (3)层次调整——整理由(1)、(2)两步所得到的树或森林,使之层次分明。 (4)森林的遍历 两种遍历方法;前序遍历后续遍历。 5.7 应用举例 5.7.1 二叉树的应用举例——哈夫曼及哈夫曼编码 1、哈夫曼树也称最优二叉树,在实际中有着广泛的应用。 叶子节点的权值 是对叶子结点赋予的一个有意义的数值量。 二叉树的带权路径长度 设二叉树具有n个带权值的叶子节点,从根节点到叶子节点的路径长度与相应的叶子节点权值的乘积之和叫做二叉树的带权路径长度,记为: WPL=EWkLk 哈夫曼树 给定一组具有确定权值的叶子结点,可以构造出不同的二叉树,将其中带权值路径长度最小的二叉树称为哈夫曼树。 哈夫曼算法基本思想: (1)初始化:由给定的n个权值构造n棵只有一个根结点的二叉树,从而得到一个二叉树集合。 (2)选取与合并:在F中选取根结点的权值最小的两棵二叉树分别作为左、右子树构造一棵新的二叉树,这棵新的二叉树的根结点的权值为其左右子树根结点的权值之和。 (3)删除与加入:在F中删除作为左、右子树的两棵二叉树,并将新建的二叉树加入到F中。 (4)重复(2)(3)两步的操作,当集合F只剩下一棵二叉树时这棵二叉树便是哈夫曼树。 2、哈夫曼编码 在进行程序设计时,通常给每一个字符记一个单独的代码来表示一组字符,我们称之为编码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论 10

打赏作者

Richard-Cai

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值