蔡先生的专栏

天天学习,好好向上。

数据归一化和两种常用的归一化方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:

一、min-max标准化(Min-Max Normalization)

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

clip_image002

其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

二、Z-score标准化方法

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

clip_image004

其中clip_image006为所有样本数据的均值,clip_image008为所有样本数据的标准差。


参考:http://www.cnblogs.com/chaosimple/archive/2013/07/31/3227271.html

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/caiandyong/article/details/46778913
个人分类: Data Mining
上一篇java BufferedWriter写数据不完全
下一篇MapReduce多文件输出
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭