Hadoop的局限性


1、抽象层次低,需要手工编写代码来完成,使用上难以上手;
2、只提供两个操作,Map和Reduce,表达力欠缺;
3、一个Job只有Map和Reduce两个阶段(Phase),复杂的计算需要大量的Job完成,Job之间的依赖关系是由开发者自己管理的;
4、处理逻辑隐藏在代码细节中,没有整体逻辑;
5、中间结果也放在HDFS文件系统中;
6、ReduceTask需要等待所有MapTask都完成后才可以开始;
7、时延高,只适用Batch数据处理,对于交互式数据处理,实时数据处理的支持不够;
8、对于迭代式数据处理性能比较差。


摘抄自:知乎评论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值