机器学习
文章平均质量分 85
caicai2526
这个作者很懒,什么都没留下…
展开
-
SVM详解
SVM入门(一)至(三)Refresh按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅.(一)SVM的简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学转载 2017-11-17 09:48:12 · 416 阅读 · 0 评论 -
ROC曲线MATLAB实现以及AUC
首先我们先来对ROC的一些解释以及计算的方法。 ROC曲线(Receiver Operating Characteristic Curve)是利用Classification模型真正率(True Positive Rate)和假正率(False Positive Rate)作为坐标轴,图形化表示分类方法的准确率的高低。 ROC(Receiver Operating Characteristic)原创 2017-11-26 10:00:50 · 8744 阅读 · 5 评论 -
svmtrain和svmpredict简介
本文主要介绍了SVM工具箱中svmtrain和svmpredict两个主要函数:(1)model= svmtrain(train_label, train_matrix, [‘libsvm_options’]); 其中: train_label表示训练集的标签。 train_matrix表示训练集的属性矩阵。 libsvm_options是需要设置的一系列参数,各个参数可参见《libs...原创 2018-03-26 11:06:53 · 1807 阅读 · 0 评论 -
几种图像边缘检测算子的比较
转载地址: https://blog.csdn.net/sinat_32974931/article/details/51125516不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为...转载 2018-04-04 11:23:39 · 3281 阅读 · 0 评论 -
Adaboost算法原理分析和实例+代码(简明易懂)
【尊重原创,转载请注明出处】 http://blog.csdn.net/guyuealian/article/details/70995333 本人最初了解AdaBoost算法着实是花了几天时间,才明白他的基本原理。也许是自己能力有限吧,很多资料也是看得懵懵懂懂。网上找了一下关于Adaboost算法原理分析,大都是你复制我,我摘抄你,反正我也搞不清谁是原创。有些资料给出的Adaboost实例...转载 2018-07-07 10:24:49 · 749 阅读 · 0 评论