Segnet分割网络caffe教程(一)

segnet分割网络的地址说明:http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
在这个里面主要讲解如何使用segnet以及每一步的步骤,对于里面所介绍的只有一些关键部分,对于一些细节有点缺失,博主将会一步一步的说明一下如何利用segnet对自己的数据进行分割。
segnet代码的github地址:https://github.com/alexgkendall/SegNet-Tutorial

一些博文对segnet的讲解
(1)http://blog.csdn.net/fate_fjh/article/details/53467948
(2)http://blog.csdn.net/u014451076/article/details/70741629

首先对原来segnet网络实验的说明:

/SegNet/
    CamVid/
        test/
        testannot/
        train/
        trainannot/
        test.txt
        train.txt
    Models/
        # SegNet and SegNet-Basic model files for training and testing
    Scripts/
        compute_bn_statistics.py
        test_segmentation_camvid.py
    caffe-segnet/
        # caffe implementation

这些是对用到的github公布的segnet代码的一个介绍。大家可以按步骤看一下

之后的操作,(1)创建训练所用的list,即train.txt,test.txt这两个文件,这两个文件的生成方法代码我在下一个博文里面写;
(2)开始训练,用到的文件:segnet_train.prototxt,segnet_solver.prototxt。
(3)训练,三种形式

1  ./SegNet/caffe-segnet/build/tools/caffe train -gpu 0 -solver /SegNet/Models/segnet_solver.prototxt  # This will begin training SegNet on GPU 0
2  ./SegNet/caffe-segnet/build/tools/caffe train -gpu 0 -solver /SegNet/Models/segnet_basic_solver.prototxt  # This will begin training SegNet-Basic on GPU 0
3  ./SegNet/caffe-segnet/build/tools/caffe train -gpu 0 -solver /SegNet/Models/segnet_solver.prototxt -weights /SegNet/Models/VGG_ILSVRC_16_layers.caffemodel  # This will begin training SegNet on GPU 0 with a pretrained encoder

不要忘了建立保存,训练模型的地方
(4)测试,测试有点小烦,主要用的文件有:compute_bn_statistics.py,test_segmentation_camvid.py这连个文件会中的compute_bn_statistics.py会生成test_weights.caffemodel,生成的命令语句如下:

1、python /Segnet/Scripts/compute_bn_statistics.py /SegNet/Models/segnet_train.prototxt /SegNet/Models/Training/segnet_iter_10000.caffemodel /Segnet/Models/Inference/  # compute BN statistics for SegNet
2、python /Segnet/Scripts/compute_bn_statistics.py /SegNet/Models/segnet_basic_train.prototxt /SegNet/Models/Training/segnet_basic_iter_10000.caffemodel /Segnet/Models/Inference/  # compute BN statistics for SegNet-Basic

(5)显示测试结果,文件有test_segmentation_camvid.py,segnet_inference.prototxt ,test_weights.caffemodel,命令如下

1、python /SegNet/Scripts/test_segmentation_camvid.py --model /SegNet/Models/segnet_inference.prototxt --weights /SegNet/Models/Inference/test_weights.caffemodel --iter 233  # Test SegNet
2、python /SegNet/Scripts/test_segmentation_camvid.py --model /SegNet/Models/segnet_basic_inference.prototxt --weights /SegNet/Models/Inference/test_weights.caffemodel --iter 233  # Test SegNetBasic

按照上面步骤大家就可以看见官网公布的数据以及网络的结果喽。下一篇博客讲解自己的数据是如何从头开始操作。

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值