cublas矩阵乘法(SGEMM)

//cublas计算矩阵乘法(sgemm)

#include<cuda_runtime.h>
#include<device_launch_parameters.h>
#include<cublas_v2.h>
#include<curand.h>
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<time.h>
#include<math.h>

void verify_solution(float *a, float*b, float*c, int n) {
	float temp;
	float epsilon = 0.001;
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			temp = 0;
			for (int k = 0; k < n; k++) {
				temp += a[k*n + i] * b[j*n + k];

			}
			assert(fabs(c[j*n + i] - temp) < epsilon);
		}
	}
}

int main() {
	int n = 1 << 10;
	size_t bytes = n * n * sizeof(float);

	float*h_a, *h_b, *h_c;
	float*d_a, *d_b, *d_c;

	h_a = (float*)malloc(bytes);
	h_b = (float*)malloc(bytes);
	h_c = (float*)malloc(bytes);

	cudaMalloc(&d_a, bytes);
	cudaMalloc(&d_b, bytes);
	cudaMalloc(&d_c, bytes);

	curandGenerator_t prng;
	curandCreateGenerator(&prng, CURAND_RNG_PSEUDO_DEFAULT);//随机数生成器
	
	curandSetPseudoRandomGeneratorSeed(prng, (unsigned long long)clock());
	//设备上使用随机数填充矩阵
	curandGenerateUniform(prng, d_a, n*n);
	curandGenerateUniform(prng, d_b, n*n);

	cublasHandle_t handle;
	cublasCreate(&handle);
	//标量
	float alpha = 1.0f;
	float beta = 0.0f;
	//相当于核函数
	cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, n, n, &alpha, d_a, n, d_b, n, &beta, d_c, n);

	cudaMemcpy(h_a, d_a, bytes, cudaMemcpyDeviceToHost);
	cudaMemcpy(h_b, d_b, bytes, cudaMemcpyDeviceToHost);
	cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
	//验证解决方案
	verify_solution(h_a, h_b, h_c, n);

	printf("conpleted successfully\n");
	return 0;
}
//此程序使用了curand函数 需要在库里添加curand.lib

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值