系列笔记3、原型模式 -clone()

原型模式也就是我们俗说的clone:


1.关于clone()方法







浅拷贝的例子:


class MyTest implements Cloneable {


    String a;
    ArrayList<String> list;
    MyB b;


    @Override
    protected Object clone() {
        try {
            MyTest tmp=(MyTest) super.clone();
            tmp.a=this.a;
            tmp.list=this.list;
            return tmp;
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return null;
    }
}


private void test(){


        MyTest t = new MyTest();
        t.a = "aaa";
        t.list = new ArrayList<String>();
        t.list.add("0");
        t.list.add("1");
        t.b = new MyB("bbbbb");


        MyTest clone = (MyTest) t.clone();
        clone.a = "sss";
        clone.list.add("2");
        clone.b= new MyB("bbbbb2222222");
        Log.i("info", "t.toString " + t.toString());
        Log.i("info", "clone.toString " + clone.toString());
}




03-21 17:14:52.496 6534-6534/aidl.example.caiwei.aidlclient I/info: t.toString MyTest{a='aaa', b='bbbbb', list=[0, 1, 2]}
03-21 17:14:52.496 6534-6534/aidl.example.caiwei.aidlclient I/info: clone.toString MyTest{a='sss', b='bbbbb2222222', list=[0, 1, 2]}
可以看到输出的原始变量t,它的ArrayList类对象list长度发生了变化,但是它的MyB类对象b没有发生改变。




来看另一种写法:
private void test(){
 MyTest t = new MyTest();
        t.a = "aaa";
        t.list = new ArrayList<String>();
        t.list.add("0");
        t.list.add("1");
        t.b=new MyB("bbbbb");




            MyTest clone = (MyTest) t.clone();
            clone.a = "sss";
            clone.list.add("2");
            clone.b.b="bbbbb2222222";
            Log.i("info", "t.toString " + t.toString());
            Log.i("info", "clone.toString " + clone.toString());
}


03-21 17:12:42.483 6272-6272/aidl.example.caiwei.aidlclient I/info: t.toString MyTest{a='aaa', b='bbbbb2222222', list=[0, 1, 2]}
03-21 17:12:42.483 6272-6272/aidl.example.caiwei.aidlclient I/info: clone.toString MyTest{a='sss', b='bbbbb2222222', list=[0, 1, 2]}


可以看到输出的原始变量t,它的ArrayList类对象list长度发生了变化,它的MyB类对象b也发生了改变。


这是浅拷贝。






修改clone()方法为深拷贝(注意,需要修改MyB也为):


 @Override
 protected Object clone() {
            try {
                MyTest tmp = (MyTest) super.clone();
                tmp.a=this.a;
                tmp.list=(ArrayList<String>)this.list.clone();
                tmp.b=(MyB)this.b.clone();
                return tmp;
            } catch (CloneNotSupportedException e) {
                e.printStackTrace();
            }
            return null;
}


03-21 17:27:59.620 7620-7620/aidl.example.caiwei.aidlclient I/info: t.toString MyTest{a='aaa', b='bbbbb', list=[0, 1]}
03-21 17:27:59.620 7620-7620/aidl.example.caiwei.aidlclient I/info: clone.toString MyTest{a='sss', b='bbbbb2222222', list=[0, 1, 2]}


可以看到打印结果,clone对象的修改不会影响到原始对象。


所以,Object类的clone方法执行的是浅拷贝,编写程序时要注意这个细节;如需要实现深拷贝,需要implements实现Cloneable接口,并重写clone方法。需要注意的另一个问题是,通过clone拷贝对象不会去执行构造函数。



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值