高斯混合模型GMM

本文探讨了单维和多维高斯模型中,如何通过极大似然估计求解均值方差。针对高斯混合模型,强调了隐变量的重要性——未知样本来源的分模型标识,以及为何EM算法在解决混合模型参数估计上的优势。特别提到了EM算法在计算复杂性上的特点和原因。
摘要由CSDN通过智能技术生成

在这里插入图片描述
隐变量指的是观测量属于哪个高斯分布。

单维高斯分布:在这里插入图片描述
多维高斯分布:在这里插入图片描述
高斯混合模型:
在这里插入图片描述
在这里插入图片描述

对于单高斯模型,求解对应的均值方差可以直接使用极大似然估计,对于混合高斯,由于各个子模型的权重,均值方差都不知道,使用极大似然后求导无法计算。所以使用迭代–EM算法:

这里的隐变量是各个样本来自哪个分模型 == 计算男女各自的分布函数,但是不知道样本来自男或女,如果知道直接分开样本求即可。这里就是我们的隐变量

在这里插入图片描述
高斯混合模型,之所以不采用极大似然估计的原因是可以看到,log里面是和的形式,无法求导得到解析解。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值