隐变量指的是观测量属于哪个高斯分布。
单维高斯分布:
多维高斯分布:
高斯混合模型:
对于单高斯模型,求解对应的均值方差可以直接使用极大似然估计,对于混合高斯,由于各个子模型的权重,均值方差都不知道,使用极大似然后求导无法计算。所以使用迭代–EM算法:
这里的隐变量是各个样本来自哪个分模型 == 计算男女各自的分布函数,但是不知道样本来自男或女,如果知道直接分开样本求即可。这里就是我们的隐变量。
高斯混合模型,之所以不采用极大似然估计的原因是可以看到,log里面是和的形式,无法求导得到解析解。