时间序列数据集——可用于预测和分类

本文介绍了UCI数据集,一个包含622个数据集的机器学习资源,涵盖了交通流量、电力、生物等多个领域的数据。具体探讨了Electricity(用电量)和Traffic(交通流量)数据集,以及空气质量的PM2.5数据,这些数据可用于时间序列预测和数据分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

一.UCI数据集

UCI官方网站
UCI数据集是由加州大学欧文分校维护的用于机器学习的数据库。官方网站收集了622个数据集,可用于时间序列预测、数据分类回归等多种任务,包含交通流量、电力、生物、空气质量、互联网等等各个方面的数据。
在这里插入图片描述

选取其中的2种数据:
Electricity 数据集(用电量):
ElectricityLoadDiagrams20112014
包含从 321 位客户记录的三年(2012-2014 年)每小时用电量数据,每一列代表一个客户端。该数据每 15 分钟记录一次用电量(kW)。
在这里插入图片描述

Traffic 数据集(交通流量):
是来自加利福尼亚交通运输部的 15 个月的每日数据,描述了旧金山湾区高速公路不同车道的占用率。监测值的数值范围介于 0 和 1 之间,每隔 10 分钟对数据进行一次采样。

### 寻找与交通相关的数据集 对于数据分析或机器学习项目中的交通相关数据集,可以从多个公开资源下载适合的数据集合。一个推荐的方式是从专门提供各种数据集链接的页面查找所需资料[^1]。 #### 常见的交通数据集来源 - **政府开放平台**:许多国家地区政府提供了大量的公共安全、道路监控以及交通事故报告等数据。 - **学术研究机构**:大学科研组织经常发布用于实验验证的研究成果所使用的数据集,比如加州大学欧文分校(UCI)机器学习库中可能有合适的交通流量预测数据集。 - **竞赛网站**:Kaggle这样的在线社区经常会举办基于真实世界挑战的比赛,其中不乏涉及交通运输领域的问题设定及其配套的数据源。 为了具体说明如何获取这类数据,在PyTorch深度学习项目的案例中有提到可以访问特定网页来找到不同类型的高质量数据集下载链接。这不仅限于图像识别任务,也涵盖了其他应用场景下的结构化表格形式或其他格式的数据文件。 ```python import requests from bs4 import BeautifulSoup url = "https://example.com/dataset_links" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # Assuming the links are within anchor tags with href attributes pointing to datasets. dataset_links = [] for link in soup.find_all('a'): href = link.get('href') if '/traffic/' in href: # Example filter condition based on URL structure dataset_links.append(href) print(dataset_links[:5]) # Print first five found traffic-related dataset URLs as examples ``` 此段Python代码展示了通过网络爬虫技术自动抓取指定网址上的所有超链接,并筛选出那些看起来像是指向交通主题数据集的位置。当然实际操作时还需要考虑更多细节如合法性声明、API接口调用方式等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值