intel的集成显卡(intel(r) uhd graphics) 配置stable diffusion

由于很多商务本没有独立显卡,只有Intel的集成显卡,在配置安装stable diffusion 时候需要特殊对待,参考不少帖子,各取部分现稍加整合。

整体思路分两个部分:

第一步是先配置环境,主要是安装Anaconda + Pytorch,

第二步是安装 stable diffusion

第一步的配置环境阶段(Anaconda + Pytorch)参考以下链接

https://blog.csdn.net/zcsdn1996/article/details/112476263

这个链接是介绍如何配置Anaconda + Pytorch环境。

第二步的访问链接是

https://zhuanlan.zhihu.com/p/578233719

这个帖子只参考stable diffusion的安装过程

最后在执行 

webui-user.bat 

时一直失败,报错是 RuntimeError: Couldn't install gfpgan,于是又是各种搜索,

https://www.bilibili.com/read/cv19991459/

目前参照的是这个帖子的第一个办法改动,在每个前面添加 https://ghproxy.com/ ,哈哈哈哈哈,终于成功了。

生成图片的时候,竟然又报错了 RuntimeError: "LayerNormKernelImpl" not implemented for 'Half',解决办法是这个帖子 https://www.bilibili.com/read/cv19132184?from=articleDetail 里面提的如下改动:

编辑stable-diffusion-webui目录下的./repositories/stable-diffusion/ldm/models/diffusion/ddim.py

将第21、22行的cuda改成cpu

修改后重新启动根目录的 webui-user.bat 文件,浏览器运行 http://127.0.0.1:7860/ ,成功绘图!

### 使用 Intel UHD Graphics 770 进行大模型推理 对于希望利用 Intel UHD Graphics 770 显卡进行大模型推理的应用场景,可以采用特定框架和工具来实现这一目标。OpenVINO™ 工具套件提供了针对英特尔硬件优化的功能,能够显著提升基于 CPU 和集成 GPU 的推理效率[^1]。 #### 安装必要的软件包和支持库 为了使 Intel UHD Graphics 770 能够支持高效的大规模机器学习工作负载,在 Ubuntu 上需安装如下组件: ```bash sudo apt-get update && sudo apt-get install -y intel-openvino-runtime-tbb-intel64 libusb-1.0-0-dev python3-pip pip3 install openvino-dev[ngraph,onnx,pytorch,tensorflow2] ``` 这些命令会部署 OpenVINO™ 所必需的基础运行时环境以及 Python API 接口,从而允许开发者轻松加载预训练模型并执行推理操作。 #### 配置 OpenVINO™ 环境变量 完成上述依赖项的设置之后,还需配置环境变量以便于后续调用 OpenVINO™ 功能模块: ```bash source /opt/intel/openvino_2021/bin/setupvars.sh ``` 此脚本初始化了路径和其他必要参数,使得可以在当前 shell 中访问到所有由 OpenVINO™ 提供的服务与接口函数。 #### 性能评估方法论 当涉及到具体应用案例中的性能评测时,建议遵循以下原则来进行测试: - **选择合适的基准数据集**:根据不同应用场景选取具有代表性的输入样本作为衡量标准; - **记录时间消耗指标**:通过多次迭代计算平均处理时间和吞吐量等关键绩效指数; - **对比不同设备间的差异**:在同一条件下分别测量仅依靠 CPU 处理的结果同启用 iGPU 加速后的变化情况; 值得注意的是,尽管 Intel UHD Graphics 770 属于较为先进的集成图形解决方案之一,但在面对极其复杂或者大型神经网络结构时仍可能存在局限性。因此,在实际项目规划阶段应当充分考虑预期需求与现有资源之间的匹配度,并适时调整策略以达到最佳性价比平衡点。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值