南昌理工acm暑假集训
本周学习了数据结构中的哈希表并练习了一些上周学习的数据结构的题目
下周多校联赛开始,在做比赛补题的同时学习搜索和图论
一般哈希表
哈希(hash)表的定义:哈希表是一种根据关键码去寻找值的数据映射结构,该结构通过把关键码映射的位置去寻找存放值的地方
哈希表又称为散列表, -般由Hash函数(散列函数)与链表结构共同实现。与离散化思想类似,当我们要对若干复杂信息进行统计时,可以用Hash函数把这些复杂信息映射到一一个容易维护的值域内。
哈希冲突
正如定义所说哈希是通过关键码映射找存放值的位置。因为值域变简单、范围变小,有可能造成两个不同的原始信息被哈希函数映射为相同的值,所有我们需要处理这种冲突情况。
例如:不同的存放值映射到相同的地址
储存值为:3,6,9。p值为3
则 3 mod 3 == 6 mod 3 == 9 mod 3。
所以3,6,9发生了冲突
哈希冲突解决
常用的有拉链法和开放寻址法
1.拉链法
拉链法在冲突的位置拉出一条单链表进行储存冲突的值
注意:
求余时取模时的时要是一个质数,而且要离2的整数次幂要尽可能的远,这样造成的冲突是最小的
拉链法的模板:
int h[N], e[N], ne[N], idx;
// 向哈希表中插入一个数
void insert(int x)
{
int k = (x % N + N) % N;
e[idx] = x;
ne[idx] = h[k];
h[k] = idx ++ ;
}
// 在哈希表中查询某个数是否存在
bool find(int x)
{
int k = (x % N + N) % N;
for (int i = h[k]; i != -1; i = ne[i])
if (e[i] == x)
return true;
return false;
}
2.开放寻址法
开放寻址法说白了就和上厕所一样,从第K个坑位开始找直到找到一个空位置,然后进去。
模板:
int h[N];
// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
int find(int x)
{
int t = (x % N + N) % N;
while (h[t] != null && h[t] != x)
{
t ++ ;
if (t == N) t = 0;
}
return t;
}
找一模板题用两种方法做一下:acwing模拟散链表
拉链法:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+3;//求余时取模时的时要是一个质数,而且要 离2的整数次幂要尽可能的远,这样造成的冲突是最小的
int h[N],e[N],ne[N],idex;//h[N]为哈希表的槽,e[N]为储存的值,en{N]为单链表中next指针,idex当前到达的位置
void insert(int x)
{
int k=(x%N+N)%N;//c++中x为正数则模N后为正数,x为负数则摸N后为负数。+N%N保证最后值一定为正数.k为哈希值将值映射在1~n之间
//这三步与单链表插入方法相同
e[idex]=x;
ne[idex]=h[k];
h[k]=idex++;
}
bool find(int x)
{
int k=(x%N+N)%N;
for(