点上方蓝色“菜鸟学Python”,选“星标”公众号
重磅干货,第一时间到达
Pandas这个库对Python来说太重要啦!因为它的出现,让Python进行数据分析如虎添翼,作为Python里面最最牛逼的库之一,它在数据处理和数据分析方面,拥有极大的优势,受到数据科学开发者的广大欢迎。
小编最近在逛GitHub的时候,发现了一款神器,一款神器分析Pandas DataFrames的图形化界面,可以帮助我们对数据集进行可视化的处理,非常不错!
01
如何安装
安装步骤其安装步骤十分简单,只需要使用pip命令安装即可。
pip3 install pandasgui
#清华镜像
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple pandasgui
建议大家用清华镜像安装,这样会稳定而且快很多。
02
功能特点
PandasGUI是一个交互式的数据操作界面,类似于Excel,但是其对于数据处理更加方便快捷,共拥有7项功能特点:
查看DataFrames和Series数据
交互式绘图
数据筛选
统计摘要
数据编辑和复制/粘贴
拖放导入CSV文件
搜索工具栏
03
使用方式
启动PandasGUI的方式,代码也十分简单,只需要导入相关库,获取DataFrames数据并显示就好了。示例代码如下:
然后我们就可以看到一个图像化的界面了。
04
实战练习
这次我们拿大名鼎鼎的泰坦尼克数据集来做练习,一起看一下用这款神器如何分析,还是用上面的几行示例代码来启动PandaGui:
在首页中我们可以看到数据的大小维数(第一个红框)891*12,以及我们选择的六个菜单栏:DataFrame,Filters,Statistics,Grapher,Reshaper等,六个菜单栏可以按照自己所需调整到不同区域方便操作。
上图展示小编将过滤器和统计调整在右边的画面,大家可根据需求进行自行调整,下面将对菜单栏分别进行学习操作。
DataFrame
这里对数据进行展示,当我们想要查看数据时,点击DataFrame便可查看。
Filters数据筛选
这是一个可以根据输入条件对数据进行初步筛选的交互界面,只需要将条件输入框中,点击ADD Filter按钮即可,在这里,小编输入了Survived == 1、Age>30、Sex == "male"三个条件,但是之选中了其中两个条件,其过滤结果如下图所示。
Statistics统计菜单栏
显示了数据各个变量之间的统计结果,包含了每个变量的数据类型,总数,平均值,最大值,最小值等。
Grapher画图菜单栏
提供了直方图、散点图、折线图、饼状图、词云等12种图像格式,用户可以根据需求选取变量绘制相应的图形。
下面以直方图和词云为例子向大家进行展示:
上图绘制了年龄大于30的船上游客的年龄直方图,可以看到Filter工具在画图时仍可以同时使用。
上图以名字为例子,绘制了船上人员名字的词云图。
ReshaperReshaper菜单栏
展示了了对原始数据进行重新组合为新DataFrames的功能。它包含了DataFrames的基本属性,实际上代表了DataFrames的两个方法,df.melt(),df.pivot(),以图像化的形式进行了展现。这里以pivot进行展示:pivot()参数:values:对应的二维NumPy值数组。columns:列索引:列名称。index:行的索引:行号或行名。aggfun: 使用方法
上图中以Sex为行索引,Age为列索引,Fare系统值,操作后的表格展示为:
在上图中,我们可以看到,在最左边增加了df_pivot的DataFrames数据,每操作一次,会增加一个DataFrames数据,并在左边显示,新增之后的DataFrames数据依然适用于之前所有的操作。此外,新生成的DataFrames可以直接拖拽在文件夹生成新的csv文件,保存方便。
到这里,小编的探索就结束了,有了这个工具,大家就可以像操作Excel一样操作Dataframe数据,迅速获取有用的信息,不知道大家有没有心动呢!
推荐阅读:这个GitHub 1400星的Git魔法书火了,斯坦福校友出品丨有中文版贼 TM 好用的 Java 工具类库
超全Python IDE武器库大总结,优缺点一目了然!
秋招来袭!GitHub28.5颗星!这个汇聚阿里,腾讯,百度,美团,头条的面试题库必须安利!
收获10400颗星!这个Python库有点黑科技,竟然可以伪造很多'假'的数据!
牛掰了!这个Python库有点逆天了,竟然能把图片,视频无损清晰放大!
点这里,获取一大波福利