- 博客(972)
- 收藏
- 关注
原创 李飞飞领衔7所顶尖机构抛出智能体王炸成果,论文一作竟是DeepSeek前成员?
将LLMs训练为交互式智能体面临独特挑战,包括长期决策以及与随机环境反馈进行交互。
2025-05-20 10:49:57
原创 9000字落地实操:AI做用户购后评论洞察分析
从海量用户评价中剖析出市场需求,无异于沙里淘金。一方面在于用户评价很多时候是不痛不痒的「中评」,看不出来顾客到底想表达什么?
2025-05-20 10:48:48
245
原创 DeepSeek基础:模型蒸馏概念与技术详解
随着一系列复杂模型(如GPT-4、ResNet、BERT)在图像识别、自然语言处理等领域展现了惊人的能力,其庞大的参数量和高昂的计算成本,却成为实际落地的“拦路虎”。这种“能力越强,距离越远”的矛盾,正是当今AI技术普惠化的核心痛点。DeepSeek以其高效的性能及低廉的成本得到广泛青睐,其中**模型蒸馏(Knowledge Distillation)**是其能够达到这一目标的核心要点。那么模型蒸馏到底是什么?本文将从以下方面进行介绍:
2025-05-20 10:24:44
339
原创 聊聊大模型中的强化学习,以及各种RLHF算法
强化学习(Reinforcement Learning, RL) 是机器学习的一个分支,目标是让智能体(agent)通过与环境(environment)的交互来学习最优的行为策略(policy),从而最大化某个累积回报(cumulative reward)。
2025-05-19 10:29:08
705
原创 行业落地分享:大模型在小红书推荐的应用
在 2025 年全球机器学习技术大会上,小红书推荐算法负责人严岭分享了大模型在小红书推荐系统中的应用实践,为行业带来诸多启发。
2025-05-19 10:23:31
758
原创 Ollama + DeepSeek + Dify 打造企业级知识库的“超级大脑”
1、安装ollama:从官网下载安装包:https://ollama.com/download/windows
2025-05-19 10:22:03
594
原创 DeepSeek医院部署:730+医院应用场景总结
在医疗行业加速数字化转型的背景下,人工智能(AI)技术正深刻改变医疗服务的模式与效率。DeepSeek智慧医疗解决方案已成功部署于全国730余家医院,覆盖广泛的应用场景,从患者服务到临床诊疗、医院管理、科研支持,构建起全流程智慧医疗生态。本文将深入剖析这些应用场景,展示AI技术如何赋能医疗行业,提升服务质量与运营效率。
2025-05-19 10:21:02
753
原创 LLM 写不出靠谱 SQL?试试加个知识图谱,准确率提升 60%!
AI 改变了我们和数据打交道的方式。现在随便问一句:“显示第二季度各地区的销售趋势”,几秒钟内就能得到结果。听起来是不是很酷?
2025-05-18 10:45:00
862
原创 DeepSeek100个应用场景-按使用频率
学习、使用和接入DeepSeek成为了业界的必选项,各类手册攻略也非常多。那么,Deepseek到底能做什么,目前有哪些典型的场景,各类场景应用的成熟性如何。要回答这个问题,DeepSeek自己可能最有发言权。 以下内容分为两个部分,一是按照市场应用的频度列出10个大类共100个场景,二是针对这些场景,按照普及度进行分类总结。 下列100个场景展示了DeepSeek在不同领域的广泛应用,体现了其强大的多功能性和适应性。
2025-05-17 10:45:00
809
原创 n8n + mcp王炸组合:5个节点轻松搭建一个AI工作流
最近比较火热的AI话题离不开MCP,MCP协议为大模型提供了访问外部数据与工具的统一接口。各大云厂商腾讯云和阿里百炼也都纷纷接入了MCP。MCP就像给大模型接入了一个多功能插槽即插即用。对于大模型来说只有万能插座也无法发挥出价值,就像一个大功率的发动机只用来充个电,能把大模型的作用发挥到极致的还是需要通过AI工作流。今天为大家分享实际操作一下MCP加工作流的应用场景。
2025-05-16 15:34:02
684
原创 RAG不需要切块向量化了?通过PageIndex构建Agentic RAG
你是否对长篇专业文档的向量数据库检索准确性感到失望?传统的基于向量的RAG系统依赖于语义*相似性*而非真正的*相关性*。但在检索中,我们真正需要的是**相关性**——这需要**推理能力**。当处理需要领域专业知识和多步推理的专业文档时,相似度搜索常常不尽人意。
2025-05-15 14:06:25
611
原创 AI+数据智能体的三大支点:数据治理、知识库和大模型
> 当销售部喊出"业绩增长15%",财务部却坚称"只有8%"。 >> 会议室里争论不休,时间流逝,竞争对手已经抢占先机。 >> 你不禁自问:`明明砸了千万建设数据系统,为何企业依然深陷数据内耗?`
2025-05-15 14:05:25
1017
原创 基于DeepSeek手搓一个Rag知识库(手把手,个人电脑也能玩哦)
当下数字化浪潮席卷全球,数据呈爆炸式增长,计算能力指数级提升,算法持续创新突破,三者共同构筑起人工智能发展的坚实底座。高性能芯片赋予机器强大算力,深度学习等算法让模型能挖掘数据深层价值,推动人工智能从理论迈向广泛应用。但从技术角度看,人工智能最容易落地的场景如下
2025-05-14 11:33:22
546
原创 Qwen微调干货!对话、指令、Function Call、思考链数据集构造全流程揭秘!
在大模型微调的实践中,**如何构建和选择微调数据集,是决定微调效果最关键的因素之一**。目前,社区已经积累了大量优秀的微调框架和开放数据集。在很多通用场景中,开发者只需按需组合不同的框架与数据集,就能完成基础微调。
2025-05-14 11:29:51
904
原创 RAG还是微调?AI落地的关键选择
> 你是否曾经面临这样的困境:部门刚刚决定采用大语言模型解决业务痛点,但技术团队却陷入了"`到底该用RAG还是微调`"的激烈争论中?>> 一边是`成本控制派`,坚持RAG轻量级方案;另一边是`性能至上派`,认为只有微调才能满足业务需求。 >> 让我们跳出技术视角,用真实业务场景来理解这两种方案。
2025-05-13 10:55:29
845
原创 平安集团首席科学家肖京:大模型在金融行业的应用场景与前景
肖京表示,人工智能对人类社会产生的影响可以总结为效率和智慧。DeepSeek的出现标志着全球人工智能进入能力升维,进入能学习强思考、触类旁通的第三个发展阶段;其两大显著特点是开源性与垂域增强能力,以及强化学习尺度法则,使金融行业迎来客户需求、工作模式和商业生态三大变化。平安集团在营销、服务、运营、风控上面都有具体场景,在风险治理上形成完整的风险治理体系,以期能够有效地支持在应用场景中呈现具体应用价值。
2025-05-13 10:50:39
581
原创 人工智能与金融大模型:跨行业应用、挑战与未来路径
人工智能(AI)与大型语言模型(LLM)的融合显著推动了金融行业的智能化转型,其应用涵盖市场分析、风险管理、投资组合优化等领域,并逐步渗透至医疗、制造、教育等跨行业场景。基于Transformer架构的模型(如BloombergGPT、FinGPT)通过海量数据训练,在金融文本挖掘、情绪分析和交易预测中展现出卓越性能。然而,大型语言模型(LLM)的广泛应用面临多重挑战:技术与数据挑战;模型透明性与可信度挑战;安全与合规挑战;行业资源分配挑战。未来需通过联邦学习、可解释AI(XAI)等技术优化模型透明度和适应
2025-05-13 10:48:51
1324
原创 智能体Agent与工作流构建实战指南:从选型决策到高效实施
历经多个业务系统的构建,我深感Anthropic的《Build effective agents》一文与自身实战经历高度契合。本文在详解工作流与Agent的技术选型标准、设计模式应用及实施要点的同时,也融入了我的实战心得与实践经验总结。无论您正考虑构建工作流系统还是Agent系统,都能在此找到适合场景的最佳实践方案。特别值得关注的是文末的工具提示工程部分,这是Agent成功实施的关键因素。
2025-05-12 21:15:07
929
原创 Langchain+DeepSeek R1从入门到精通
LangChain 是一个专为构建基于大语言模型(LLMs)的应用而设计的强大框架。它可以帮助开发者高效地创建智能对话、搜索、数据处理、代码生成等 AI 相关应用。
2025-05-12 21:10:57
733
原创 小白入门大模型:LangChain
Langchain是一个语言模型的开发框架,主要是利用大型LLMs的强大得few-shot以及zero-shot泛化能力作为基础,以Prompt控制为核心基础,让开发者可以根据需求,往上快速堆叠应用,简单来说:LangChain 是基于提示词工程(Prompt Engineering),提供一个桥接大型语言模型(LLMs)以及实际应用App的胶水层框架。
2025-05-12 21:08:33
632
原创 基于 DIFY 的自动化数据分析实战
数据分析领域,基于大模型, 如何高效地从需求出发,使用DIY搭建可视化数据分析系统,最终生成可视化报告,是一个核心问题。本文将介绍如何使用 DIFY 搭建一套完整的数据分析自动化流程,实现 输入需求 -> 查询数据库 -> LLM 分析 -> 可视化输出。
2025-05-11 10:45:00
836
原创 RAG Flow搭建AI医疗助手
在搭建AI医疗助手时,RAGFlow平台提供了一个便捷高效的方法。通过RAGFlow,你可以快速创建一个医疗问诊助手。该平台提供了智能问答系统,能提供基于证据的准确回答,非常适合构建医疗客服系统。此外,RAGFlow允许用户通过自定义模型和工作流来创建符合特定需求的AI助手。
2025-05-10 10:27:40
640
原创 LangGraph 实战教程:构建自定义 AI 工作流
LangGraph 是 LangChain 生态系统的一部分,专门用于构建基于 LLM(大型语言模型)的复杂工作流和 Agent 系统。它采用有向图结构来定义工作流程,使开发者能够创建动态、可控且可扩展的 AI 应用程序。简单来说,LangGraph 是一个框架,允许你使用图结构来定义 LLM 应用程序的不同组件如何交互,从而实现复杂的、多步骤的 AI 工作流程。LangGraph 是构建复杂 AI 工作流的强大工具,它提供了灵活的流程控制、强大的状态管理和良好的集成能力。
2025-05-08 12:05:53
645
原创 LangGraph 实战:用 Python 打造有状态智能体
状态驱动与有向图:LangGraph 通过State(通常用TypedDict定义)贯穿整个执行流程,所有节点读取并更新状态局部;有向图(Graph)则定义了节点之间的控制流 ([LangChain AI][1])。节点与边:每个Node表示一个执行单元(如 LLM 调用、工具函数、决策逻辑),Edge则可携带条件实现分支或循环,使流程更灵活可控 ([DEV Community][2])。可循环的工作流:区别于传统的 DAG(有向无环图),LangGraph 支持循环。
2025-05-08 12:01:43
662
原创 LlamaIndex使用指南
LlamaIndex是一个很好的工具,可以将数据(无论其格式如何)与LLM联系起来,并利用他们的能力与数据进行交互。我们已经看到了如何在数据和应用程序中使用自然语言来生成响应/执行任务。对于企业来说,在企业应用程序中使用LlamaIndex可能会带来一些问题虽然LlamaHub是一个很好的存储库,可以找到各种各样的数据连接器,但这个列表仍然不够详尽,并且没有提供与一些主要工作空间应用程序的连接。调整LlamaIndex管道的每个元素(检索器、合成器、索引等等)的配置是一个繁琐的过程。
2025-05-08 11:58:56
904
原创 拆开揉碎!围绕知识图谱+RAG,做自己的应用!
本节内容,主要完成以下任务:基本的环境配置实现聊天引擎构建基于聊天引擎实现交互界面前端。(前端使用了4个封装函数)
2025-05-07 16:02:15
933
原创 实战指南:从零构建 MCP 架构下的 Agentic RAG 系统,无第三方MCP Server
日志显示,这里未加载向量索引,而是由工具加载这个文档的节点,并生成文档摘要后返回(SummaryIndex的效率不太高,有待优化)
2025-05-07 15:57:17
648
原创 微调一个知乎风格大模型,有点上头~
大模型的微调其实并没有想象中的困难,仅仅采用 transformers 一个库(本人没用 trl)稍微对训练数据做点处理就已经足够了,关键的问题在于数据的质量和数量。如果一个数据集人眼看上去都不是特别容易学习的,那么大模型同样会学习困难。采用 LoRA 的话,尽量将 rank 设置大一些,因为总的来说参数量越多效果越好(深度学习并不是参数量越多越容易过拟合,而是相反)。
2025-05-06 20:15:17
888
原创 重磅!用 Gemini 2.5 搭载 Cohere Embed v4,视觉RAG 终于不用 Markdown 绕路了!
在多模态AI快速发展的今天,企业在数字化转型中面临着如何高效处理和理解复杂图像信息的挑战。传统的RAG(Retrieval-Augmented Generation)系统主要依赖于文本数据,对于包含图像、图表、幻灯片等视觉信息的文档处理能力有限,常常需要将图像转换为Markdown格式,导致信息丢失和处理效率低下。传统的RAG系统在处理包含图像的文档时,通常需要将图像转换为Markdown格式,以便进行文本检索和生成。
2025-05-06 20:13:01
952
原创 这才是多模态数据融合,组学啥的啥都能整一块,学到不少——生信进阶
近日,一项发表于《Nature Communications》的研究通过整合放射学、病理学、基因组学、转录组学和蛋白质组学等多模态数据,构建了多模态融合亚型(MOFS)框架,成功识别出三种具有不同预后和治疗机会的胶质瘤亚型,为胶质瘤的精准治疗提供了关键依据。胶质瘤是成人中最常见的原发性恶性中枢神经系统肿瘤,其中 IDH 野生型胶质母细胞瘤(GBM)最为普遍且侵袭性强,5 年生存率不足 10%。
2025-05-05 20:19:05
723
原创 RAG最佳实践:一篇让你不再迷茫的指南
重排序:monoT5综合表现最佳,TILDEv2适合快速实验摘要:Recomp碾压其他方案,但会牺牲些许延迟📌 我的私藏技巧:尝试“逆向重组”(Reverse Packing),把关键信息放在输入的开头或结尾——LLM更容易捕捉重点!
2025-05-05 20:18:01
1008
原创 MedReason:通过知识图谱在大型语言模型中引导事实性医学推理步骤
MedReason是由美国加州大学圣克鲁斯分校、加拿大不列颠哥伦比亚大学等机构联合推出的一个医学推理数据集。该项目旨在通过知识图谱引导的方式,为大型语言模型(LLMs)生成高质量的医学推理步骤,从而提升其在医学领域的推理能力和准确性。
2025-05-04 10:45:00
796
原创 IF=9.7!柳叶刀发文宠儿:Meta分析!只要数据和框架搭的好,文章质量嘎嘎升!香港大学带给你最新模版~
今天给大家带来的这篇文章是香港大学李嘉诚医学院研究团队刚发表在柳叶刀子刊上的,是什么让它受到青睐的呢?峰哥来分析一下:1.数据量巨大:是到目前为止最大的跨血统之间的GWAS荟萃分析,样本量可是有8000+!这数据量谁看了不得说一句牛!还发现了新的关联位点,2.联合分析:通常我们看到的Meta分析都是制作分析,而本文综合了Meta分析+单细胞测序分析+湿实验验证,打破了传统Meta的框架,虽说这里的实验只能为了验证咱们的候选基因在ENS发育中的功能。单纯打了个辅助,但是依旧得分呀!
2025-05-03 10:45:00
835
原创 Qwen能吞下整本扫描版PDF,直接转Word了,这波操作太赞了!
本文章解决了一个大家普遍遇到的问题,就是如何将扫描的PDF书直接转为word,文中介绍了基于 Qwen2.5-VL-7B 多模态大模型,自动读取扫描版 PDF,具有如下特色:转化准确率高;哪怕一整本扫描的书也能轻松应对;文中全部代码和步骤都开源,确保大家可以复现。
2025-05-02 10:45:00
1055
原创 从字节、百川、Bespoke Labs 3个大模型项目,看RL驱动下的Agent技术趋势
这三篇论文思路一致,内化工具调用,用最简单的奖励信号(只看最终结果对错)来驱动强化学习,让模型自己决定什么时候调用工具、调用哪个工具,以及怎样用工具返回的信息。这种方法不依赖于人工示范或精细的中间步骤奖励,反而更有效地避免了模型reward hacking的现象出现。Less is More for Reward Design,是目前的reward一大趋势,这样训练比较容易训练稳定,不容易被hack。但是单一的结果reward会变得太稀疏、太延迟,训练效率低,这也是目前的一些问题。
2025-05-01 10:45:00
599
原创 知识库+DeepSeek,3步赋能Word,创作效率提升10倍
登录ollama(https://ollama.com/),点击网页中间的“Download”弹出页面中继续点击“Download for Windows”下载完成后进行软件安装安装完成后,打开命令行输入ollama -v,如果返回版本号,表示安装成功。打开ollama deepseek下载地址(https://ollama.com/library/deepseek-r1),选择合适的安装版本。
2025-04-30 20:59:38
1022
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人