数据集中归一化问题

本文详细介绍了在MATLAB中进行数据归一化的多种方法,包括`mapminmax`函数的使用,以及如何在训练集和测试集间保持归一化的一致性。归一化的主要目的是加速算法的训练过程,特别是神经网络,同时讨论了不同归一化方法的选择。通过实例展示了如何使用`premnmx`、`postmnmx`和`tramnmx`进行数据预处理和反归一化。强调了在处理不同规模数据时,归一化的重要性以及选择合适归一化策略的必要性。
摘要由CSDN通过智能技术生成
==================================================
几个要说明的函数接口:
  1. [Y,PS] = mapminmax(X)
  2. [Y,PS] = mapminmax(X,FP)
  3. Y = mapminmax('apply',X,PS)
  4. X = mapminmax('reverse',Y,PS)
复制代码
用实例来讲解,测试数据
  1. x1 = [1 2 4], x2 = [5 2 3];
  2. >> [y,ps] = mapminmax(x1)
  3. y =
  4.    -1.0000   -0.3333    1.0000

  5. ps =
  6.       name: 'mapminmax'
  7.      xrows: 1
  8.       xmax: 4
  9.       xmin: 1
  10.     xrange: 3
  11.      yrows: 1
  12.       ymax: 1
  13.       ymin: -1
  14.     yrange: 2
复制代码
其中y是对进行某种规范化后得到的数据,这种规范化的映射记录在结构体ps中.让我们来看一下这个规范化的映射到底是怎样的?
  1. Algorithm
  2. It is assumed that X has only finite real values, and that the elements of each row are not all equal.

  3.     * y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
复制代码
* [关于此算法的一个问题.算法的假设是每一行的元素都不想相同,那如果都相同怎么办?实现的办法是,如果有一行的元素都相同比如xt = [1 1 1],此时xmax = xmin = 1,把此时的变换变为y = ymin,matlab内部就是这么解决的.否则该除以0了,没有意义!]


也就是说对x1 = [1 2 4]采用这个映射 f: 2*(x-xmin)/(xmax-xmin)+(-1),就可以得到y = [ -1.0000   -0.3333    1.0000]
我们来看一下是不是: 对于x1而言 xmin = 1,xmax = 4;
则y(1) = 2*(1 - 1)/(4-1)+(-1) = -1;
    y(2) = 2*(2 - 1)/(4-1)+(-1) = -1/3 = -0.3333;
    y(3) = 2*(4-1)/(4-1)+(-1) = 1;
看来的确就是这个映射来实现的.
对于上面algorithm中的映射函数 其中ymin,和ymax是参数,可以自己设定,默认为-1,1;

比如:
  1. >>[y,ps] = mapminmax(x1)
  2. >> ps.ymin = 0;
  3. >> [y,ps] = mapminmax(x1,ps)
  4. y =
  5.          0    0.3333    1.0000

  6. ps =
  7.       name: 'mapminmax'
  8.      xrows: 1
  9.       xmax: 4
  10.       xmin: 1
  11.     xrange: 3
  12.      yrows: 1
  13.       ymax: 1
  14.       ymin: 0
  15.     yrange: 1
复制代码
则此时的映射函数为: f: 1*(x-xmin)/(xmax-xmin)+(0),是否是这样的这回你可自己验证.O(∩_∩)O

如果我对x1 = [1 2 4]采用了某种规范化的方式, 现在我要对x2 = [5 2 3]采用同样的规范化方式[同样的映射],如下可办到:
  1. >> [y1,ps] = mapminmax(x1);
  2. >> y2 = mapminmax('apply',x2,ps)
  3. y2 =
  4.     1.6667   -0.3333    0.3333
复制代码
即对x1采用的规范化映射为: f: 2*(x-1)/(4-1)+(-1),(记录在ps中),对x2也要采取这个映射.
x2 = [5,2,3],用这个映射我们来算一下.
  1. y2(1) = 2(5-1)/(4-1)+(-1) = 5/3 = 1+2/3 = 1.66667
  2. y2(2) = 2(2-1)/(4-1)+(-1) = -1/3 = -0.3333
  3. y2(3) = 2(3-1)/(4-1)+(-1) = 1/3 = 0.3333
复制代码
X = mapminmax('reverse',Y,PS)的作用就是进行反归一化,讲归一化的数据反归一化再得到原来的数据:
  1. >> [y1,ps] = mapminmax(x1);
  2. >> xtt = mapminmax('reverse',y1,ps)
  3. xtt =
  4.      1     2     4
复制代码
此时又得到了原来的x1(xtt = x1);
===
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值