_刘文凯_
码龄10年
关注
提问 私信
  • 博客:658,782
    社区:44
    动态:634
    659,460
    总访问量
  • 169
    原创
  • 65,813
    排名
  • 10,837
    粉丝
  • 353
    铁粉
  • 学习成就

个人简介:熟练掌握c/c++, R, matlab, python,unity3D, flask,Linux,pyqt5, docker, anaconda, 爬虫,机器学习,深度学习,图神经网络,keras, tensorflow, pytorch, 生物信息学, 实变函数,泛函分析,大数据,hadoop, HDFS,Hive, spark, NLP, CV, ArcGIS等单词拼写.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2014-12-04
博客简介:

刘文凯的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    4,227
    当月
    20
个人成就
  • 获得881次点赞
  • 内容获得233次评论
  • 获得2,789次收藏
  • 代码片获得10,829次分享
创作历程
  • 9篇
    2024年
  • 27篇
    2023年
  • 39篇
    2022年
  • 94篇
    2021年
成就勋章
TA的专栏
  • 机器学习
    50篇
  • 基础
    26篇
  • 深度学习
    36篇
  • 我的创新想法
    1篇
  • 图神经网络
    4篇
  • linux与网站搭建
    20篇
  • python
    27篇
  • PINN
    2篇
  • 比赛竞赛
    2篇
  • 实变函数与高等概率论
    1篇
  • 计算机博弈
    5篇
  • matlab
    5篇
  • c++学习
    1篇
TA的推广
兴趣领域 设置
  • 服务器
    linux
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

稀疏变分高斯过程【超简单,全流程解析,案例应用,简单代码】

稀疏变分高斯过程(Sparse Variational Gaussian Processes, SVGP)是一种高效的高斯过程(GP)近似方法,它使用一组称为引入点的固定数据点来近似整个数据集。这种方法大大减少了高斯过程模型的计算复杂度,使其能够适用于大数据集。下面是SVGP的详细数学过程。在标准高斯过程中,给定数据集xiyii1N{(xi​yi​i1N​,目标是学习一个映射fff,其中f∼GPmkf∼GPmkmmm是均值函数,kkk。
原创
发布博客 2024.05.06 ·
1498 阅读 ·
30 点赞 ·
0 评论 ·
19 收藏

小学生都能看懂的高斯过程及其基础详解

高斯过程通常表示为GPmkGP(m, k)GPmk,其中mmm是均值函数,通常可以是零(或任何其他常数),kkk是协方差函数,也称为核函数。当提到GP01GP(0, 1)GP01时,通常指的是具有零均值和单位方差的简化高斯过程。假设我们有一个函数fxf(x)fx从输入空间XX映射到实数R\mathbb{R}R。如果对于任意选择的点集,这些点对应的函数值fx1fxnfx1​fxn​总是服从多元高斯分布,则ffffx∼。
原创
发布博客 2024.05.05 ·
1098 阅读 ·
11 点赞 ·
0 评论 ·
28 收藏

大语言模型对于“长序列”的处理方法

处理非常长的序列(如超过20万个元素的序列)对于当前的大型语言模型来说仍然是一个挑战,尤其是那些基于Transformer架构的模型,因为这些模型的自注意力机制在计算上是非常昂贵的,计算复杂度和内存需求与序列长度的平方成正比增长。然而,近年来有几种方法被提出来解决这一问题,这些方法主要通过优化注意力机制、使用不同的架构或引入额外的技术来减少计算负担。
原创
发布博客 2024.04.16 ·
844 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

大模型用到的位置编码汇总(面试)

大模型的外推性问题是指大模型在训练时和预测时的输入长度不一致,导致模型的泛化能力下降的问题。在目前的大模型中,一般指的是超出预训练设置的上下文长度时,依旧保持良好推理效果的能力。
原创
发布博客 2024.04.16 ·
1739 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

大模型推理过程

在人工智能领域,尤其是在机器学习和深度学习中,“推理”(Inference)是指使用训练好的模型来进行预测或决策的过程。在模型被训练以学习数据的特征和模式之后,推理就是将实际的数据输入模型,以获得输出结果的步骤。例如,在一个图像识别任务中,推理就是将新的图像输入到训练好的模型中,模型会识别图像中的对象并给出答案。
原创
发布博客 2024.04.14 ·
1356 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

常见分词器tokenizer汇总

大模型中的分词器:BPE、WordPiece、Unigram LM、SentencePiece。
原创
发布博客 2024.04.13 ·
719 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

大模型之一:大语言模型预训练的过程

大语言模型的一般训练过程(3步):1、预训练学知识,2、指令微调学格式,3、强化学习对齐人类偏好。
原创
发布博客 2024.04.13 ·
608 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

LLM大语言模型微调方法和技术汇总

微调(Fine-tuning)是一种迁移学习的方法,用于在一个预训练模型的基础上,通过在特定任务的数据上进行有监督训练,来适应该任务的要求并提高模型性能。微调利用了预训练模型在大规模通用数据上学习到的语言知识和表示能力,将其迁移到特定任务上。共有四类微调方法增加额外参数,如:Prefix Tuning、Prompt Tuning、Adapter Tuning及其变体。选取一部分参数更新,如:BitFit。引入重参数化,如:LoRA、AdaLoRA、QLoRA。
原创
发布博客 2024.04.13 ·
2163 阅读 ·
13 点赞 ·
1 评论 ·
24 收藏

脑认知科学基础知识汇总(常见脑区、常见测试方法)

V1 和 V4:V1(Primary Visual Cortex)和 V4(一个位于腹侧视觉通路中的区域)是视觉系统中的两个关键区域。V4:A region in the ventral visual pathway(腹侧视觉通路中的一个区域),位于颞叶和枕叶之间,是视觉系统中的一个重要区域。V1:Primary Visual Cortex(主视觉皮层)是大脑皮层的一个区域,位于枕叶后上方,是视觉信息最早到达和最基本处理的区域。这种传播可以是兴奋性的(激活下一个神经元)或抑制性的(抑制下一个神经元)。
原创
发布博客 2024.01.25 ·
3023 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏

推荐系统与冷启动

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档。
原创
发布博客 2023.12.26 ·
1271 阅读 ·
25 点赞 ·
0 评论 ·
16 收藏

在Python中,*f和**f是用于解包参数的语法

f用于解包可迭代对象,将其元素作为独立的参数传递给函数。**f用于解包字典,将其键值对作为关键字参数传递给函数。
原创
发布博客 2023.12.07 ·
609 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

《功能磁共振多变量模式分析中空间分辨率对解码精度的影响》论文阅读

fMRI中的多变量模式分析(MVPA)已被用于从分布的皮层激活模式中提取信息,这在传统的单变量分析中可能无法检测到。然而,对于fMRI中MVPA的物理和生理基础以及空间平滑对其性能的影响知之甚少。一些研究已经解决了这些问题,但他们的调查仅限于3岁时的视觉皮层,结果相互矛盾。在这里,我们使用超高场(7 T)功能磁共振成像来研究空间分辨率和平滑对语音内容(元音)解码和说话者身份的影响。
原创
发布博客 2023.12.01 ·
1409 阅读 ·
24 点赞 ·
0 评论 ·
18 收藏

RLHF:强化学习结合大预言模型的训练方式

强化学习从人类反馈中学习(RLHF,Reinforcement Learning from Human Feedback)是一种将强化学习应用于优化语言模型的方法。传统的强化学习方法通常使用奖励函数作为反馈信号来指导模型学习,但在某些任务中,设计合适的奖励函数可能非常困难或耗时。RLHF的目标是通过人类提供的反馈来改进模型,从而缓解奖励函数设计的挑战。chatgpt等语言模型均用了这一方法。
原创
发布博客 2023.11.29 ·
1276 阅读 ·
23 点赞 ·
0 评论 ·
20 收藏

神经网络:脑科学中功能MRI成像的应用及其一些相关概念

MRI(核磁共振成像)是一种医学成像技术,用于获取人体内部结构的详细图像。MRI利用核磁共振现象来生成图像,核磁共振是一种基于原子核的物理现象。MRI成像的原理涉及到原子核的自旋和磁共振的概念。原子核具有自旋,类似于地球围绕自转的自旋。在没有外部磁场的情况下,原子核的自旋方向是随机的。然而,当一个物体被放置在强大的磁场中,如MRI机器中的大型磁体,原子核的自旋会趋向于与磁场方向平行或反平行排列。在MRI过程中,医生会将患者放置在强磁场中,使得患者体内的原子核自旋与该磁场对齐。然后,医生会通过向患者体内施加辅
原创
发布博客 2023.11.28 ·
1343 阅读 ·
23 点赞 ·
0 评论 ·
23 收藏

梯度下降与损失函数的基础知识

预测误差敏感性(Sensitivity to Prediction Errors):损失函数应该对预测误差敏感,即当预测结果与真实值之间的差异较大时,损失函数的值应该相应增加。损失函数(Loss Function)是在机器学习和优化问题中使用的一个函数,用于衡量模型预测结果与真实值之间的差异或误差。损失函数的选择是根据具体问题和任务的特点而定,不同的问题可能需要不同的损失函数。学习率决定了每次参数更新的步长,过大的学习率可能导致参数在损失函数的最小值附近来回震荡,过小的学习率则可能导致收敛速度过慢。
原创
发布博客 2023.11.27 ·
1736 阅读 ·
12 点赞 ·
0 评论 ·
16 收藏

扩散模型,快速入门和基于python实现的一个简单例子(复制可直接运行)

当结合扩散模型和深度学习时,一种常见的方法是使用卷积神经网络(Convolutional Neural Network,简称CNN)来学习扩散过程中的模式和规律。以下是一个简单的例子,使用Python和PyTorch来实现扩散模型与深度学习的结合。这个代码实现了一个使用卷积神经网络(CNN)结合扩散模型的预测模型。具体来说,它使用CNN学习了扩散模型中的温度分布变化规律,并通过训练来预测给定初始温度分布下的最终温度分布。
原创
发布博客 2023.11.27 ·
2204 阅读 ·
24 点赞 ·
0 评论 ·
42 收藏

强化学习,快速入门与基于python实现一个简单例子(可直接运行)

强化学习是一种机器学习方法,旨在让智能体通过与环境的交互学习如何做出最优决策以最大化累积奖励。在强化学习中,智能体通过尝试不同的行动并观察环境的反馈(奖励或惩罚)来学习。它不依赖于预先标记的训练数据,而是通过与环境的实时交互进行学习。强化学习的核心概念包括以下几个要素:智能体(Agent):执行动作并与环境进行交互的学习主体。环境(Environment):智能体所处的外部环境,它对智能体的动作做出反应,并提供奖励或惩罚信号。
原创
发布博客 2023.11.25 ·
2376 阅读 ·
22 点赞 ·
0 评论 ·
30 收藏

基于pytorch使用特征图输出进行特征图可视化

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了基于pytorch使用特征图输出进行特征图可视化的方法特征图输出就是某个图像(序列)经过该层时的输出以下是本篇文章正文内容以上就是今天要讲的内容。
原创
发布博客 2023.11.09 ·
1831 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

获取深度学习模型权重或者某一层特征图输出的方法:基于pytorch

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了获取深度学习模型权重或者某一层特征输出的方法,包括使用hook机制。特征图输出就是某个图像(序列)经过该层时的输出以下是本篇文章正文内容以上就是今天要讲的内容。
原创
发布博客 2023.11.09 ·
1540 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

利用梯度上升可视化卷积核:基于torch实现

基于梯度上升的可视化是一种常用的技术,用于理解卷积神经网络(CNN)中的卷积核是如何对输入图像进行特征提取的。该方法可以通过最大化卷积层输出的激活值来生成图像,从而使得卷积核对特定特征更加敏感。以上代码均经过本人亲测可用。
原创
发布博客 2023.11.09 ·
355 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多