稀疏变分高斯过程【超简单,全流程解析,案例应用,简单代码】
稀疏变分高斯过程(Sparse Variational Gaussian Processes, SVGP)是一种高效的高斯过程(GP)近似方法,它使用一组称为引入点的固定数据点来近似整个数据集。这种方法大大减少了高斯过程模型的计算复杂度,使其能够适用于大数据集。下面是SVGP的详细数学过程。在标准高斯过程中,给定数据集xiyii1N{(xiyii1N,目标是学习一个映射fff,其中f∼GPmkf∼GPmkmmm是均值函数,kkk。




























