利用cnn实现手写体识别(tf版本)

最近几天学习了机器学习里面的神经网络,接触到了卷积神经网络,根据老师给的学习视频进行了一个简单的复现。

首先我们先进行数据集的加载(第一次下载可能需要一些时间,要联网下载数据集)

我们设置了一个batch_size为100的批次

import tensorflow as tf
# Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
import time

# 载入数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 设置批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

 现在定义一些最基本的函数,一些w和b的生成,卷积层和池化层的生成。

strides=[b,h,w,c]
b表示在样本上的步长默认为1,也就是每一个样本都会进行运算。
h表示在高度上的默认移动步长为1,这个可以自己设定,根据网络的结构合理调节。
w表示在宽度上的默认移动步长为1,这个同上可以自己设定。
c表示在通道上的默认移动步长为1,这个表示每一个通道都会进行运算
def make_weigth(shape):
    init = tf.truncated_normal(shape=shape,stddev=0.1)
    return tf.Variable(init)

def make_bias(shape):
    init = tf.constant(0.1,shape=shape)
    return tf.Variable(init)
# 卷积层
def make_cov2(input,filter):
    return tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='SAME')
#池化层
def make_pool(value):
    return tf.nn.max_pool(value, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

接下来我们定义输入层

x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

将你得到的图片信息进行转化,将其形成一个4维的信息,这样才能和卷积核进行内积操作

# 改变x的格式转为4维的向量[batch,in_hight,in_width,in_channels]
x_image = tf.reshape(x, [-1, 28, 28, 1]

接下来进行生成卷积操作和激活函数操作等等

#生成一个卷积
w_cov1 = make_weigth([5,5,1,32]) #生成5*5的窗口,32个卷积核从一个平面获取特征进行计算
b_cov1 = make_bias([32])#每一个卷积核有一个b
#进行卷积计算,并且使用rule激活函数
h_cov1 = tf.nn.relu(make_cov2(x_image,w_cov1)+b_cov1)
#进行池化计算
h_pool = make_pool(h_cov1)

#生成第二个卷积
w_cov2 = make_weigth([5,5,32,64])
b_cov2 = make_bias([64])
h_cov2 = tf.nn.relu(make_cov2(h_pool,w_cov2)+b_cov2)
h_pool2 = make_pool(h_cov2)

在进行两个卷积层后,我们还需要实现2个全连接层

#实现全连接层
w_fc1 = make_weigth([7*7*64,128])
b_fc1 = make_bias([1,128])

# 把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# 求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

# keep_prob: float类型,每个元素被保留下来的概率,设置神经元被选中的概率,在初始化时keep_prob是一个占位符
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 实现第二个全连接层
w_fc2 = make_weigth([128,10])
b_fc2 = make_bias([1,10])
#求去输出 不需要进行激活函数
# 输出层
# 计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)

最后进行一个loss的计算

# 交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
# 求准确率(tf.cast将布尔值转换为float型)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

现在我们的进本框架已经搭建成功了

进行迭代操作,在迭代30次操作左右运行结果不错,可能需要很长的时间,所以我只进行了5次的迭代操作。

# 开始运行
with tf.Session() as sess:
    start_time = time.clock()
    sess.run(tf.global_variables_initializer()) #初始化所有的变量
    #进行迭代5次迭代
    for epoch in range(5):
        for batch in range(n_batch):
            batch_x,batch_y = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_x,y:batch_y,keep_prob:0.7})
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
        print('Iter' + str(epoch) + ',Testing Accuracy=' + str(acc))
    end_time = time.clock()
    print('Running time:%s Second' % (end_time - start_time))  # 输出运行时间

接下来附上完整的代码

import tensorflow as tf
# Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
import time

# 载入数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 设置批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

def make_weigth(shape):
    init = tf.truncated_normal(shape=shape,stddev=0.1)
    return tf.Variable(init)

def make_bias(shape):
    init = tf.constant(0.1,shape=shape)
    return tf.Variable(init)
"""
strides=[b,h,w,c]
b表示在样本上的步长默认为1,也就是每一个样本都会进行运算。
h表示在高度上的默认移动步长为1,这个可以自己设定,根据网络的结构合理调节。
w表示在宽度上的默认移动步长为1,这个同上可以自己设定。
c表示在通道上的默认移动步长为1,这个表示每一个通道都会进行运算
"""
# 卷积层
def make_cov2(input,filter):
    return tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='SAME')
#池化层
def make_pool(value):
    return tf.nn.max_pool(value, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

#输入层
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

# 改变x的格式转为4维的向量[batch,in_hight,in_width,in_channels]
x_image = tf.reshape(x, [-1, 28, 28, 1])

#生成一个卷积
w_cov1 = make_weigth([5,5,1,32]) #生成5*5的窗口,32个卷积核从一个平面获取特征进行计算
b_cov1 = make_bias([32])#每一个卷积核有一个b
#进行卷积计算,并且使用rule激活函数
h_cov1 = tf.nn.relu(make_cov2(x_image,w_cov1)+b_cov1)
#进行池化计算
h_pool = make_pool(h_cov1)

#生成第二个卷积
w_cov2 = make_weigth([5,5,32,64])
b_cov2 = make_bias([64])
h_cov2 = tf.nn.relu(make_cov2(h_pool,w_cov2)+b_cov2)
h_pool2 = make_pool(h_cov2)

#实现全连接层
w_fc1 = make_weigth([7*7*64,128])
b_fc1 = make_bias([1,128])

# 把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# 求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

# keep_prob: float类型,每个元素被保留下来的概率,设置神经元被选中的概率,在初始化时keep_prob是一个占位符
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 实现第二个全连接层
w_fc2 = make_weigth([128,10])
b_fc2 = make_bias([1,10])
#求去输出 不需要进行激活函数
# 输出层
# 计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)

# 交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
# 求准确率(tf.cast将布尔值转换为float型)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 开始运行
with tf.Session() as sess:
    start_time = time.clock()
    sess.run(tf.global_variables_initializer()) #初始化所有的变量
    #进行迭代5次迭代
    for epoch in range(5):
        for batch in range(n_batch):
            batch_x,batch_y = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_x,y:batch_y,keep_prob:0.7})
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
        print('Iter' + str(epoch) + ',Testing Accuracy=' + str(acc))
    end_time = time.clock()
    print('Running time:%s Second' % (end_time - start_time))  # 输出运行时间

新手小白第一次写文章,希望多多包涵

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值