- 博客(239)
- 资源 (11)
- 收藏
- 关注
原创 RBM and NADE TO Collaborative Filtering
RBM and NADE TO Collaborative Filtering最近在看深度学习在推荐算法上应用,本篇是hulu公司同事的ICML的文章A Neural Autoregressive Approach to Collaborative Filtering,介绍了利用NADE进行电影推荐的方法,在NETFX的数据集上取得了不错的结果,本文主要是学习和记录笔记,学习NADE-CF,并记录所
2016-09-25 16:20:00 3188 1
原创 基于RNN的个性化电影推荐尝试
基于RNN的个性化电影推荐尝试随着深度学习在工业界的应用越来越多,优酷土豆尝试在视频推荐领域中利用深度学习方法,提高视频推荐的准确性,为用户提供优质的视频推荐服务。本次为大家分享在个性化电影推荐上的尝试,利用RNN的序列模型进行用户电影推荐。视频推荐问题RNN模型RNNLSTM电影推荐应用训练样本模型目标实验结果视频推荐问题目前常用的个性化
2016-09-23 18:34:52 3031 1
转载 转 NLP资源
最近把一些在网上见到的自然语言处理的资源整理了一下,包括论文列表、软件资源和一些实验室主页、个人主页等,希望能对NLP研究者有所帮助,由于个人视野有限,目前只整理了这些,以后会持续更新。在此也感谢这些资源的提供者和维护者。转载请标明出处(http://blog.csdn.net/xuh5156/article/details/7437475)论文、博客1.
2014-08-08 13:42:48 1359
转载 BP神经网络介绍
科普:神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近
2013-09-11 11:44:16 3758
转载 linux 节省时间
linux 节省时间http://www.pixelstech.net/article/1378265382-Time-saving-tips-Linux-users-should-know
2013-09-05 12:05:42 924
转载 DNN---BRIEF
转自 :http://farmingyard.diandian.com/post/2013-04-07/40049536511深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层
2013-09-04 14:37:04 2141
原创 深度神经网络学习资料整理
一 一个tutorial的概括 转自:http://blog.csdn.net/txdb/article/details/6766373前2天看到新闻说,用微软用深度神经网络大幅度提高了语言识别的正确率http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx于是对深度学习有了兴趣,由于
2013-09-04 14:19:50 1973
转载 神经网络入门(连载之一)
游戏编程中的人工智能技术. (连载之一)用平常语言介绍神经网络(Neural Networks in Plain English)因为我们没有能够很好了解大脑,我们经常试图用最新的技术作为一种模型来解释它。在我童年的时候,我们都坚信大脑是一部电话交换机 。(否则它还能是什么呢?) 我当时还看到英国著名神经学家谢林顿把大脑的工作挺
2013-09-02 18:01:13 1735
转载 Free/open-source machine translation software
转自:http://computing.dcu.ie/~mforcada/fosmt.htmlHere's a non-exhaustive list of links to existing free/open-source machine translation systems, which I will try to complete as I find about them. To t
2013-09-02 18:00:55 2191
转载 机器学习--交叉验证
转自:交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize),交叉验证一般要尽量满足:
2013-08-29 14:44:35 6228
转载 Deep Learning and Shallow Learning
转自:http://freemind.pluskid.org/machine-learning/deep-learning-and-shallow-learning/由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门课的 project 中见识过了 deep learning 的效果,最近在做一个东西的时候模型上遇
2013-08-27 15:07:37 2138
转载 linux--Linux查看CPU和内存使用情况
转自:http://www.cnblogs.com/xd502djj/archive/2011/03/01/1968041.html在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要。在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况。运行 top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式 -- 用基于 top 的
2013-08-23 16:12:10 950
转载 linux--文件合并和分割
转自:http://www.2cto.com/os/201203/124813.html切割合并文件在linux下用split和cat就可以完成。下面举些实例进行说明。1.文件切割文件切割模式分为两种: 文本文件 二进制模式。1.1文本模式文本模式只适用于文本文件,用这种模式切割后的每个文件都是可读的。文本模式又分为两种: 按最大文件大小切割
2013-08-23 15:59:39 1676
原创 linux---任务分配(PBS)
转自:http://blog.csdn.net/xiazhaoqiang/article/details/7761425PBS环境qsub, qstat, qdel PBS 是公开源代码的作业管理系统,在此环境下运行,用户不需要指定程序在哪些节点上运行,程序所需的硬件资源由PBS 管理和分配。1、PBS 命令 PBS 提供4 条命令用于作业管理。(1) qsub
2013-08-23 14:32:42 21504
转载 python--用 OpenMP 并行多核加速 Python!
转自:http://blog.csdn.net/gzlaiyonghao/article/details/6670128/赖勇浩(http://laiyonghao.com)注:0、读懂这篇文章需要了解 OpenMP 基本用法。1、读懂这篇文章需要了解 GIL 基本概念。2、基本上是这篇的翻译:http://docs.cython.org/src/userguide/paral
2013-08-22 16:57:41 17520
转载 shell--- awk最新教程
转自:http://blog.csdn.net/borenbao/article/details/1191402第一章 简介 awk是Unix操作系统提供的一个程序化语句,是为了使信息和文本的处理更易于表达和完成而设计的。它对于资料的处理具有很强的功能:对于文本文件里的内容做修改、对比、抽取等的处理,可以以很短的语句轻易完成。而象 C 或 Pascal 等高级语言要完成上述的动
2013-08-21 11:32:49 1707
转载 SRILM---语言模型训练工具SRILM详解
转自:http://www.52nlp.cn/language-model-training-tools-srilm-details SRILM是著名的约翰霍普金斯夏季研讨会(Johns Hopkins Summer Workshop)的产物,诞生于1995年,由SRI实验室的Andreas Stolcke负责开发维护。 关于SRILM的安装,我已经在前面关于moses平台搭建的文章(
2013-08-20 11:22:11 2400
原创 机器学习1---资料
一 深度学习笔记:http://blog.csdn.net/zouxy09/article/details/8775360二 深度学习turtol:http://blog.csdn.net/abcjennifer/article/details/7826917
2013-08-19 16:38:27 1157
转载 SRILM--语言模型--N-Gram基本介绍
转自:http://hi.baidu.com/isswangqing/item/1b8e3ad096c286be32db9033N-Gram是常用的一种语言模型,该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。设w1 w2 ⋯w n 是长度为n的词串,
2013-08-19 14:10:44 3465
转载 shell---shell小例子
转自:http://www.csdn.net/article/2013-08-15/2816581-What-I-learned-from-other-s-shell-scripts作者Fizer Khan是一位Shell脚本迷,他对有关Shell脚本新奇有趣的东西是如此的痴迷。最近他遇到了authy-ssh脚本,为了缓解ssh服务器双重认证问题,他学到了许多有用且很酷的东西。对此,他想分享给
2013-08-19 09:22:44 1100
转载 shell---数组的使用
转自:http://www.jb51.net/article/34323.htm说明:shell中数组的下标默认是从0开始的1、将字符串放在数组中,获取其长度复制代码 代码如下:#!/bin/bashstr="a b --n d"array=($str)length=${#array[@]}echo $lengthfor ((i=0; idoecho
2013-08-16 15:11:59 948
转载 shell---shell编程报错:“syntax error near unexpected token `”
转自:http://blog.csdn.net/xyp84/article/details/4435899 今天写了个shell脚本,在自己机器上运行正常,给同事,运行报错syntax error near unexpected token `,左看右看shell脚本没有问题,没有办法google搜索,发现一位仁兄讲的挺好,内容如下: 用命令vi -b 打开你的SHELL脚
2013-08-16 15:10:09 1161
原创 python--linux下,升级python
linux下查看python版本python -V 我的linux系统:centos5.5我要升级的版本是:2.7.3(目前我更新操作的最新版本【是在2这个系列中的,你也可以安装3系列的】)升级python的步骤1、下载wget http://www.python.org/ftp/python/3.2/Python-3.2.tar.bz22、解压 tar
2013-08-13 13:56:36 1454
转载 中文分词---2011-10-25 22:42 Lucene分词实现(二次开发流程)
转自:http://hi.baidu.com/zhumulangma/item/fcb2851542a2b924f7625c321.1 分词流程 在Lucene3.0中,对分词主要依靠Analyzer类解析实现。Analyzer内部主要通过TokenStream类实现。Tonkenizer类、TokenFilter类是TokenStream的两个子类。Tokenizer处理单个字符组成的
2013-08-11 10:54:34 990
转载 c#正则表达式
C# 正则表达式大全#region 正则表达式字符串 /// /// 正则表达式字符串 /// public class StrRegex { #region 正则表达式替换字符串 /// /// 正则表达式替换字符串 /// /// 字符串内容
2013-08-09 19:56:39 1169
原创 Linux命令--根据需要添加
一 vi编辑器在vi编程中,需要记住以下命令插入:i ---光标之前 a---光标之后删除:x---当前光标下 dw---光标之后剩余单词 dd--删除当前行 d$---删除剩余部分退出: :wq---保存退出 :q--不保存退出 :q!---强制退出 二 ca
2013-08-08 17:35:49 1999
原创 c#文件操作
一 文件操作using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace 读取整理{ class Program { static string desiteFile = "G:\\任务\\整理1\\";//分类
2013-08-08 13:24:30 1356
转载 深入浅出谈CUDA
“CUDA 是 NVIDIA 的 GPGPU 模型,它使用 C 语言为基础,可以直接以大多数人熟悉的 C 语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构。”“CUDA 是 NVIDIA 的 GPGPU 模型,它使用 C 语言为基础,可以直接以大多数人熟悉的 C 语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构。”
2013-08-07 20:09:34 3846
转载 VS2010中配置CUDA5.0
1、安装之前必须确认自己电脑的GPU支持CUDA。在设备管理器中找到显示适配器(Display adapters),找到自己电脑的显卡型号,如果包含在http://www.nvidia.com/object/cuda_gpus.html的列表中,说明支持CUDA。安装CUDA之前最好检查一下自己电脑的显卡驱动版本,版本过老的话,需要更新。有时候安装完毕CUDA之后,运行6中的deviceQue
2013-08-07 17:59:28 1229
转载 基于DTW算法的语音识别原理与实现
【摘 要】以一个能识别数字0~9的语音识别系统的实现过程为例,阐述了基于DTW算法的特定人孤立词语音识别的基本原理和关键技术。其中包括对语音端点检测方法、特征参数计算方法和DTW算法实现的详细讨论,最后给出了在Matlab下的编程方法和实验结果。【关键字】语音识别;端点检测;MFCC系数;DTW算法【中图分类号】TN912.34 【文献标识码】A0 引言自计算机诞生以来,通过语音
2013-08-07 09:38:51 18552 8
转载 语音识别系统的声学建模:隐马尔可夫模型(HMM)
转自:http://blog.1688.com/article/i25547966.html【导读】语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。本文详细介绍了语音识别系统基于一阶隐马尔可夫模型(HMM)的声学建模。隐马尔可夫模型(Hidden Markov Model,HMM)是马尔可夫链的一种,作为一种统计分析
2013-08-07 09:37:42 8775
转载 EM算法
EM算法作者:罗维初稿:2011年1月15日修正:2012年1月14日很碰巧,时隔一年了。面对经典的EM算法,我有了新的认识。经常有人谈到它就是"鸡生蛋,蛋生鸡"的解法,这个很通俗,但是只了解到这一层,是远不够的…… EM算法的全名是Expectation Maximization,中文名叫期望最大化算法。它是一个在含有隐变量的模型中常用的算法,在最大似然估计(ML
2013-08-06 17:44:28 1920
转载 HMM学习笔记_3(从一个实例中学习Viterbi算法)
HMM学习笔记_3(从一个实例中学习Viterbi算法) 在上一篇博客http://www.cnblogs.com/tornadomeet/archive/2012/03/24/2415583.html中,我们已经从一个例子中学会了HMM的前向算法,解决了HMM算法的第一个问题,即模型评估问题。这一讲中我们来解决第二个问题:HMM的解码问题,即即给定观测序列 O=O1O2O3…
2013-08-06 17:18:19 1455
转载 HMM学习笔记_2(从一个实例中学习HMM前向算法)
HMM学习笔记_2(从一个实例中学习HMM前向算法) HMM算法想必大家已经听说了好多次了,完全看公式一头雾水。但是HMM的基本理论其实很简单。因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察向量由一个具有相应概率密度分布的状态序列产生,又由于每一个状态也是随机分布的,所以HMM是一个双重随机过程。 HMM是
2013-08-06 17:17:27 1359
转载 HMM学习笔记_1(从一个实例中学习DTW算法)
HMM学习笔记_1(从一个实例中学习DTW算法) DTW为(Dynamic Time Warping,动态时间归准)的简称。应用很广,主要是在模板匹配中,比如说用在孤立词语音识别,计算机视觉中的行为识别,信息检索等中。可能大家学过这些类似的课程都看到过这个算法,公式也有几个,但是很抽象,当时看懂了但不久就会忘记,因为没有具体的实例来加深印象。 这次主要是用语音识别课程老
2013-08-06 17:16:39 1378
原创 语音识别一些概率知识--似然估计/最大似然估计/高斯混合模型
在语音识别中,概率模型占了至关重要的地位,在学习语音识别技术前,自己还是好好整理一下相关的概率知识。1.似然估计1.1原理在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或
2013-08-06 14:18:56 4345
转载 发邮件投简历应注意的问题
转自:http://wenku.baidu.com/view/027acf1eb7360b4c2e3f6495.html
2013-07-17 18:41:17 1722
转载 GPU通用计算调研报告
转自:http://www.cnblogs.com/chunshan/archive/2011/07/18/2110076.html摘要:NVIDIA公司在1999年发布GeForce256时首先提出GPU(图形处理器)的概念,随后大量复杂的应用需求促使整个产业蓬勃发展至今。GPU在这十多年的演变过程中,我们看到GPU从最初帮助CPU分担几何吞吐量,到Shader(着色器)单元初具规模,然后出
2013-07-15 18:38:10 3179
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人