拉格朗日乘数法

一、定义介绍

在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。

看起来很复杂,名字也挺酷的,但是应用时并不难。

设给定二元函数  z=f(x,y) 和附加条件  \varphi (x,y)=0 
为寻找  z=f(x,y) 在附加条件下的极值点,先做拉格朗日函数
F(x,y,\lambda)=f(x,y)+\lambda \varphi (x,y) ,其中  \lambda 为参数。
令  F(x,y,\lambda) 对  x 和  y 和  \lambda 的一阶偏导数等于零,即
F'_x=f'_x(x,y)+\lambda\varphi'_x(x,y)=0  F'_y=f'_y(x,y)+\lambda\varphi'_y(x,y)=0  F'_\lambda=\varphi (x,y)=0 
由上述方程组解出  x ,  y 及  \lambda ,如此求得的  (x,y) ,就是函数  z=f(x,y) 在附加条件  \varphi (x,y)=0 下的可能极值点。
若这样的点只有一个,由实际问题可直接确定此即所求的点。

从定义上看,在二元的情况下,只要对 F(x,y,\lambda) 求导两次,再结合条件 \varphi (x,y)=0 ,即可得到所求的极值点 (x,y) 。

 

二、应用

例1 已知 a,b\in R^+ ,a+b=1 ,求 \frac{1}{a}+\frac{4}{b} 的最小值。

 附加条件可化为: a+b-1=0 ,则

z=f(a,b)=\frac{1}{a}+\frac{4}{b}

\varphi(a,b)=a+b-1=0

F(a,b,\lambda)=f(x,y)+\lambda \varphi (x,y)

=\frac{1}{a}+\frac{4}{b}+\lambda(a+b-1)

对 a 、 b 求导得 F'_a(a,b,\lambda)=-\frac{1}{a^2}+\lambda=0\tag{1}F'_b(a,b,\lambda)=-\frac{4}{b^2}+\lambda=0\tag{2}

\varphi(a,b)=a+b-1=0\tag{3}

联立方程组得\lambda=\frac{1}{a^2}=\frac{4}{b^2} , b=2a

又因为 a+b-1=0 ,解得 a=\frac{1}{3} , b=\frac{2}{3}

所以z_{min}=f(\frac{1}{3},\frac{2}{3})=9

 

除了求二元函数的最值,该方法还可以用于求三元函数的最值。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值