代码随想录算法训练营DAY44|C++动态规划Part6|完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ

本文详细解析了完全背包问题,与01背包的区别在于物品可无限次选取,讨论了两种遍历顺序对动态规划的影响。通过实例和代码展示了如何使用动态规划求解518.零钱兑换II和377.组合总和IV,同时提及了与爬楼梯问题的联系。
摘要由CSDN通过智能技术生成

完全背包理论基础

卡码网第52题

文章链接:完全背包理论基础

视频链接:带你学透完全背包问题!

完全背包问题的定义

N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

重量价值
物品0115
物品1320
物品2430

每件商品有无限个,问背包能背的物品的最大价值是多少?

与01背包的核心区别

先看01背包遍历的核心代码

for (int i = 0; i < weight.size(); i++) {
  for (int j = bagweight; j >= weight[i]; j--) {
    dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  }
}

01背包的内循环是从大到小遍历的,目的就是为了保证每个物品只被添加一次;

那么对于完全背包问题的物品可以多次添加,所以要从小到大去遍历,这样的遍历方式使得每个物品可以在更新当前容量 j 的时候重复利用之前已经计算过的结果(也就是说在同一个 i 循环中,dp[j] 可以从 dp[j - weight[i]] 中获得更新,而 dp[j - weight[i]] 可能刚刚在本轮循环中被更新过),从而允许每个物品被多次选取。

//先遍历物品,再遍历背包
for (int i = 0; i < weight.size(); i++) {
  for (int j = weight[i]; j <= bagWeight; j++) {
    dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  }
}

为什么完全背包的循环顺序可以互换?

0-1背包理论基础(一)、0-1背包理论基础之滚动数组(二)文章中已经指出在01背包问题中,一维dp数组的两个for循环一定是先遍历物品,再遍历背包容量。

在完全背包问题中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

1. 先遍历物品,再遍历背包容量

for (int i = 0; i < n; i++) {      // 遍历物品
    for (int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

我们可以看出,每次考虑一个物品,然后更新所有可能的背包容量。由于是正序更新,所以 dp[j] 可以反复从 dp[j - weight[i]] 获取价值,实现了物品的重复选择。状态图展示如下:

2. 先遍历背包容量,再遍历物品

for (int j = 0; j <= bagWeight; j++) {      // 遍历背包容量
    for (int i = 0; i < n; i++) { // 遍历物品
        if (j >= weight[i]) {
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
}

在这种情况下,每个背包容量都尝试添加所有可能的物品。这样的循环同样可以正常工作,因为每个 dp[j] 都会考虑是否加入每个物品 i,并且仍然可以通过 dp[j - weight[i]] 反复获得价值,从而实现物品的重复选择。

CPP代码

这里是卡码网第52题问题的答案。

#include <bits/stdc++.h>
using namespace std;

int numsMaterials;
int bagWeight;

void solve () {
    vector<int> weights(numsMaterials, 0);
    vector<int> values(numsMaterials, 0);
    int weight, value;
    
    for (int i = 0; i < numsMaterials; i++) {
        int weight, value;
        cin >> weight >> value;
        weights[i] = weight;
        values[i] = value;
    }
    
    
    vector<int> dp(bagWeight + 1, 0);
    
    for (int i = 0; i < numsMaterials; i++) {
        for (int j = weights[i]; j<= bagWeight; j++) {
            dp[j] = max(dp[j], dp[j - weights[i]] + values[i]);
        }
    }
    
    cout << dp[bagWeight] <<endl;
}


int main () {
    cin >> numsMaterials >> bagWeight;
    solve();
    
    
    return 0;
}

⭐️518.零钱兑换II

力扣题目链接

文章链接:518.零钱兑换II

视频链接:装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II

状态:「错误点」
1. 关于dp[0]应该初始化为1,因为系统后台默认的是dp[0]应该等于1
2. 第一个遍历物品的时候肯定从零开始啊!不知道为什么第一次写的时候从1开始了。

思路

首先可以确定bagWeight=amount=5,再一个weight=value=coins。再一个本题和纯完全背包问题还不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

  • 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合为dp[j]

  • 确定递推公式

dp[j]就是所有的dp[j-coins[i]]情况相加。我们已经在这篇文章中讨论过该类问题:494.目标和

  • dp数组如何初始化

卡哥文章里写了,后台测试数据是默认,amount = 0 的情况,组合数为1的

也就是说dp[0]=1——凑成总金额0的货币组合数为1。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

  • 确定遍历顺序

对于一个纯背包问题来说,遍历顺序并不重要,因为他是一个排列问题.

但是本题中是一个明显的组合问题,比如说我们可以有一种分配方法是{1, 5}但是绝对不能再有{5, 1}。所以对于遍历顺序而言一定是 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}
  • 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:

CPP代码

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

⭐️377. 组合总和 Ⅳ

力扣题目链接

文章链接:377. 组合总和 Ⅳ

视频链接:装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV

状态:典型的排列问题,其实就是一个区别,就是遍历顺序的问题,只要我们先遍历背包,再遍历物品,就可以把物品进行反复选择,从而得出排列总和为target的个数

首先先明确一下什么是排列,什么是组合:

  • 组合不强调顺序,(1,5)和(5,1)是同一个组合。

  • 排列强调顺序,(1,5)和(5,1)是两个不同的排列。

我们在写回溯的时候,写过几次组合总和的问题,里面其实本质也是求排列,不过回溯是要求把所有的排列都列出来,而不是求排列总和相等的个数。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜

思路

  • 确定dp数组以及下标的含义

dp[i]:凑成目标正整数为i的排列个数为dp[i]

  • 确定递推公式

dp[j](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。

因为只要得到nums[j],排列个数dp[j - nums[i]],就是dp[j]的一部分。

本题还是我们经常谈论的,求装背包有几种方法,递推公式一般都是dp[j] += dp[j - nums[i]]

  • dp数组如何初始化(dp的初始化非常重要)

在求装满背包的多少种组合问题时,其实就是让dp[0]初始化为1,这样递归其他dp[i]的时候才会有数值基础

然后非零下标初始化为0

  • 确定遍历顺序

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

  • 举例来推导dp数组(当题目不能AC的时候一定要进行尝试)

20230310000625

CPP代码

关于递推公式前的条件判断语句:
一方面是防止下标超过索引下标;
另一方面防止整数溢出。

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // 遍历背包
            for (int j = 0; j < nums.size(); j++) { // 遍历物品
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};
//直接讲元素定义成题目规定的uint
class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<uint> dp(target + 1, 0);
        dp[0] = 1;

        for (int j = 0; j <= target; j++) {
            for (int i = 0; i < nums.size(); i++) {
                if (j >= nums[i])
                    dp[j] += dp[j - nums[i]]; 
            }
        }
        return dp[target];
    }
};

扩展题

还记得我们的爬楼梯吗?

70.爬楼梯

爬楼梯中,如果需要n阶才能爬到楼顶,每次你可以爬 1 或 2 个台阶。有多少种不同的方法可以爬到楼顶呢?

进一步:

如果一次可以爬3、4甚至m个台阶,一共需要爬n阶才能爬到楼顶,又如何求爬到楼顶的方法数呢?

联系到本题来看,

一步可以爬几个台阶,就相当于本题的nums=[1, 2, 3],就是一步可以爬1、2、3个台阶,target就相当于是要target阶才能爬到楼顶。

也就是装满这个背包(爬到楼顶)有多少种方法,典型的排列问题,和本题是一样一样的。

明天我们就是爬楼梯(进阶版)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值