Introduction to Algorithms-Lecture2数学课

渐进关系
Big O的数学定义

n**2+O(n)=O(n2)

Big Omiga符号
Big Theta符号

Θ渐进上下界
O渐进上界(最坏情况)
Ω渐进下界(最好情况)

Solving Recurrences
Substitution method代换法
1. guess the form of the solution
2. verify the induction(归纳法)
3. Solve the constants

Recursion-tree Method递归树法
Ex:T(n)=T(n/2)+T(n/4)+n**2

Master Method主方法
基于一个定理,但是很遗憾有限制,适用于某些情况
applies to recurrences,
of the form
T(n)=aT(n/b)+f(n)
where a>=1,b>1
f(n) is asymptotically positive
(f(n)>0 for n>=n0)

Compare f(n) vs. n**logb(a)
Case 1: smaller
f(n)=O(n**logb(a)-epsilon) for some epsilon>0
=>T(n)=Theta(n**logb(a))

Case 2: f(n)=Theta(n**logb(a) *lgn**k)
for some k>=0

 =>T(n)=Theta(n**logb(a)lgn**(k+1))

Case 3:f(n)=Omiga(n**logb(a)+epsilon)
for some epsilon>0
& af(n/b)<=(1-epsilon’)fn for some 0

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭