cake8
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
78、图嵌入的应用与相关数学符号表示
本文详细介绍了图嵌入的应用及其相关的数学符号表示。内容涵盖了图嵌入的无监督和有监督应用,包括图重建、链接预测、聚类、可视化、节点分类和图分类等具体任务。同时,文章解析了Planetoid目标中的监督损失和图正则化损失的数学表达形式,并提供了相关示例。此外,还总结了图嵌入的应用流程以及无监督和有监督任务之间的关系,展望了图嵌入在更多领域的潜在应用。原创 2025-09-07 10:31:52 · 108 阅读 · 0 评论 -
77、图嵌入技术:从浅层到深层的全面解析
本文全面解析了图嵌入技术,从浅层到深层方法进行了详细介绍。内容涵盖了监督嵌入、无监督嵌入、半监督嵌入以及深度图嵌入等多种方法,具体包括标签传播(LP)、GraphSAGE、SDNE、DGI等经典模型。文章还对不同类型的图神经网络(如消息传递GNNs、谱图卷积、空间图卷积、非欧几里得图卷积)进行了对比分析,并讨论了它们的优缺点和适用场景。此外,还总结了图嵌入技术在社交网络分析、生物信息学和推荐系统中的应用案例,并展望了未来发展趋势,包括方法融合、复杂图结构处理、跨领域应用以及可解释性研究。原创 2025-09-06 09:21:06 · 45 阅读 · 0 评论 -
76、图嵌入:原理、方法与应用
本博文系统介绍了图嵌入的原理、主要方法及其应用场景。从图结构的基本概念出发,讨论了图嵌入在处理非欧几里得数据中的重要性,并详细解析了图嵌入作为编码器-解码器问题的通用框架GraphEDM。文章进一步介绍了浅层图嵌入方法,包括基于距离和基于外积的两大类方法,涵盖了欧几里得与非欧几里得空间中的嵌入策略,以及Skip-gram等受自然语言处理启发的方法。通过流程图和表格对比了各类方法的特点,为读者提供了全面的图嵌入知识体系及其应用前景。原创 2025-09-05 15:20:14 · 42 阅读 · 0 评论 -
75、推荐系统:从显式反馈到隐式反馈及信息利用
本文详细介绍了推荐系统中从显式反馈到隐式反馈的建模方法,包括矩阵分解、概率矩阵分解(PMF)、自编码器(如AutoRec)、贝叶斯个性化排序(BPR)、因子分解机(FM)以及神经矩阵分解等核心技术。同时探讨了如何利用项目和用户的辅助信息来提升推荐效果,并分析了推荐系统中探索与利用的权衡问题及其解决方案。文章结合Netflix和MovieLens等实际案例,展示了这些方法的应用与优化策略。原创 2025-09-04 11:45:39 · 55 阅读 · 0 评论 -
74、聚类与推荐系统技术解析
本文深入解析了谱聚类、双向聚类和推荐系统的核心原理与应用。谱聚类基于图论,通过归一化割和图拉普拉斯矩阵的特征向量实现复杂数据分布的聚类;双向聚类同时对数据矩阵的行与列进行聚类,适用于生物信息学、文本挖掘和图像分析等领域;推荐系统则基于用户的历史行为和物品特征,利用协同过滤、深度学习和多模态技术进行个性化推荐。文章还探讨了这些技术的挑战与发展趋势,如谱聚类的计算复杂度问题、双向聚类的拓展应用以及推荐系统的智能化演进。原创 2025-09-03 14:37:22 · 100 阅读 · 0 评论 -
73、聚类算法:从基础到高级的全面解析
本博客全面解析了聚类算法,从基础到高级方法进行了详细讲解。内容涵盖了K-medoids、K-means及其加速技巧,介绍了多种选择最佳聚类数K的方法,包括最小化失真、最大化边缘似然、轮廓系数等。此外,还深入探讨了基于概率的混合模型聚类方法,如高斯混合模型(GMM)和伯努利混合模型,并介绍了适用于复杂簇形状的谱聚类方法。通过对比不同算法的优缺点,帮助读者更好地理解和选择适合特定任务的聚类算法。原创 2025-09-02 12:37:16 · 34 阅读 · 0 评论 -
72、聚类算法:层次凝聚聚类与K-means聚类
本文介绍了两种常见的聚类方法:层次凝聚聚类(HAC)和K-means聚类。详细讨论了聚类质量评估指标,如Rand指数和互信息,并对层次凝聚聚类的三种链接方式(单链接、全链接、平均链接)进行了对比分析。K-means聚类的算法流程、应用场景以及优化策略(如K-means++和K-medoids算法)也进行了详细阐述。此外,还提到了向量量化在图像压缩中的应用。通过这些内容,帮助读者更好地理解聚类算法的特点和适用场景。原创 2025-09-01 16:52:42 · 109 阅读 · 0 评论 -
71、自然语言处理中的词嵌入与聚类技术解析
本文详细解析了自然语言处理中的词嵌入与聚类技术。首先介绍了词嵌入的基础概念,包括不同上下文窗口对词义理解的影响以及点互信息(PMI)和潜在语义分析(LSA)的应用。随后探讨了流行的词嵌入模型,如Word2vec的CBOW和Skip-gram模型、GloVE模型,并分析了它们的训练机制与性能对比。此外,还解释了词嵌入在词类比任务中的应用以及RAND-WALK模型对词嵌入有效性的理论解释。文章进一步介绍了上下文词嵌入的概念,强调其在处理多义词方面的优势。最后,深入讨论了聚类技术的基本方法、评估指标(如纯度和兰德原创 2025-08-31 16:05:49 · 86 阅读 · 0 评论 -
70、降维技术与词嵌入方法综述
本文综述了降维技术与词嵌入方法的基本原理及其应用。重点介绍了流形学习方法,如局部线性嵌入(LLE)、拉普拉斯特征映射和 t-SNE,这些方法能够有效保留数据的局部结构或解决拥挤问题,并广泛应用于数据可视化和机器学习预处理。同时,探讨了词嵌入方法如潜在语义索引(LSI)和潜在语义分析(LSA),它们通过将稀疏的独热向量映射到低维密集空间,从而提高自然语言处理任务的性能。文章还分析了不同方法的适用场景及选择策略,并对未来的发展方向进行了展望。原创 2025-08-30 16:21:04 · 30 阅读 · 0 评论 -
69、降维技术:从因子分析到自动编码器的全面解析
本文全面解析了数据科学和机器学习中的降维技术,从传统的因子分析到其多种拓展形式,如因子分析混合模型、指数族因子分析和配对数据的因子分析模型,深入探讨了自动编码器的不同变体,包括瓶颈自动编码器、去噪自动编码器、收缩自动编码器和稀疏自动编码器。此外,文章还详细介绍了变分自动编码器(VAE)的原理、训练方法及其与普通自动编码器的区别,并讨论了各种降维技术的应用场景和选择策略。最后,展望了降维技术的未来发展趋势,包括深度学习融合、多模态降维和自适应降维等方向。原创 2025-08-29 15:11:53 · 105 阅读 · 0 评论 -
68、降维技术:PCA与因子分析的深入解析
本博客深入解析了两种重要的降维技术:主成分分析(PCA)和因子分析。文章详细介绍了PCA中如何选择潜在维度数量,包括重构误差、碎石图和轮廓似然等方法。同时,阐述了因子分析作为概率模型的生成机制、参数估计方法及其与PCA的关系。博客还对比了PCA和因子分析的模型复杂度、可解释性和计算效率,并探讨了降维技术的未来发展趋势,如深度学习结合、非参数方法、多模态降维和在线降维技术。最后,提供了实际应用中的总结与建议,帮助读者更好地选择和应用合适的降维方法。原创 2025-08-28 10:53:15 · 37 阅读 · 0 评论 -
67、机器学习中的少样本学习、弱监督学习与降维技术
本文详细介绍了机器学习中的三种关键技术:少样本学习、弱监督学习和降维技术。少样本学习适用于数据稀缺的场景,通过元学习等方法在少量标注数据下进行预测;弱监督学习处理标注不精确或部分标注的数据,降低标注成本;降维技术用于处理高维数据,通过主成分分析等方法减少计算和存储需求。文章还对比了它们的应用场景、优势与局限性,并探讨了未来的发展趋势。原创 2025-08-27 11:18:09 · 71 阅读 · 0 评论 -
66、利用少量标签示例进行学习的方法
本文详细介绍了在标签数据稀缺的情况下进行机器学习的方法,包括深度生成模型(如变分自编码器VAE、生成对抗网络GAN和归一化流)、结合自监督与半监督学习、主动学习以及元学习。文章通过对比各方法的特点、适用场景和计算复杂度,提供了选择合适方法的指导原则,并通过医疗图像分类和自然语言处理等案例展示了实际应用流程。此外,文章还探讨了未来在多模态融合、强化学习结合和高效生成模型等方面的发展趋势。原创 2025-08-26 12:07:29 · 27 阅读 · 0 评论 -
65、半监督学习方法全解析
本博客全面解析了半监督学习的多种方法,包括自训练、熵最小化、协同训练、图上的标签传播以及一致性正则化。每种方法的核心思想、优缺点和适用场景被详细阐述,并通过对比表格帮助读者快速理解不同方法之间的差异。此外,博客还介绍了这些方法在图像分类和文本分类中的实际应用案例,并提供了实施建议与未来发展趋势展望。无论是初学者还是有一定经验的研究者,都能从中获得有价值的参考信息。原创 2025-08-25 15:29:12 · 49 阅读 · 0 评论 -
64、Learning with Fewer Labeled Examples: Transfer, Self-Supervised, and Semi-Supervised Learning
这篇博文探讨了在标记数据有限的情况下进行机器学习的方法,包括迁移学习、自监督学习和半监督学习。详细分析了每种方法的原理、应用场景以及挑战。迁移学习讨论了ImageNet预训练及其在不同领域的适用性;自监督学习涵盖了填补任务、代理任务和对比任务,并介绍了SimCLR和CLIP两个典型案例;半监督学习则分析了其动机、假设、应用和挑战,并通过流程图和表格比较了不同学习方式的特点。原创 2025-08-24 10:40:15 · 55 阅读 · 0 评论 -
63、树集成学习与少样本学习方法解析
本文深入解析了树集成学习与少样本学习方法的核心原理及应用。针对树集成学习,详细推导了损失函数优化过程,并介绍了特征重要性和部分依赖图等模型解释方法;对于少样本学习,重点讨论了数据增强和迁移学习的策略,包括微调、适配器和监督预训练等技术。通过方法对比、实际案例分析和未来趋势展望,为读者提供了系统性的理解和实践指导。原创 2025-08-23 14:08:01 · 23 阅读 · 0 评论 -
62、决策树、随机森林、Bagging与Boosting算法详解
本文详细介绍了决策树、随机森林、Bagging和Boosting等机器学习算法的原理、对比及应用场景。通过表格和代码示例,展示了不同算法在测试准确率上的表现以及具体实现方式。总结了各算法的适用场景,并提供了超参数调整、特征工程和模型融合等优化建议,帮助读者根据实际问题选择合适的模型。原创 2025-08-22 13:09:02 · 95 阅读 · 0 评论 -
61、机器学习中的核方法、决策树与集成学习
本文介绍了机器学习中的三种重要方法:核方法、决策树和集成学习。核方法用于处理非线性问题,包括SVM、RVM等模型,并讨论了它们的系数估计和分类性能。决策树(CART)是一种易于解释的模型,适用于分类和回归任务,但存在预测精度不高和不稳定的问题。集成学习通过组合多个基模型来降低方差,提高模型的稳定性和性能,包括装袋和堆叠等方法。文章还详细分析了各类方法的原理、优缺点及其实际应用中的注意事项。原创 2025-08-21 09:12:12 · 38 阅读 · 0 评论 -
60、核方法与向量机技术解析
本文详细解析了支持向量机(SVM)的基础理论、核技巧的应用、SVM输出到概率的转换、与逻辑回归的联系、多类分类方法、正则化参数C的选择、核岭回归、SVM回归、稀疏向量机、相关向量机(RVM)等内容。通过对L2VM、L1VM、RVM、SVM和高斯过程(GP)等多种方法的对比,分析了它们在稀疏性、概率输出、多类处理等方面的特点,并结合实际场景给出了方法选择建议。文章还提供了Python代码示例和未来发展趋势展望,帮助读者全面理解并应用核方法与向量机技术。原创 2025-08-20 16:11:08 · 33 阅读 · 0 评论 -
59、高斯过程与支持向量机:原理、应用与优化
本文深入探讨了高斯过程和支持向量机的基本原理、优化方法及其在分类和回归任务中的应用。详细分析了高斯过程在非高斯似然下的后验近似方法、处理大型数据集的加速方案,以及支持向量机的大间隔分类原理和对偶求解策略。通过实例和代码演示了两种方法的具体实现,并对比了它们在不同场景下的适用性。总结了高斯过程和支持向量机的优势与挑战,并展望了未来在算法优化、模型融合和实际应用中的发展方向。原创 2025-08-19 13:44:21 · 31 阅读 · 0 评论 -
58、核方法与高斯过程详解
本文详细介绍了核方法与高斯过程在机器学习中的应用。首先解释了Mercer核的基本概念和常见核函数,如ARD核、Matern核和周期核,并讨论了如何通过组合和变换创建新核。接着,文章深入探讨了高斯过程的基本原理,包括无噪声和有噪声观测下的预测方法,并将其与核回归进行了比较。还涵盖了高斯过程回归中核参数估计的方法,如经验贝叶斯和贝叶斯推断。最后,提供了核方法和高斯过程的实际操作步骤和注意事项,帮助读者更好地理解和应用这些技术。原创 2025-08-18 11:49:29 · 31 阅读 · 0 评论 -
57、深度学习中的距离度量学习与核方法
本博客探讨了深度学习中的距离度量学习与核方法,涵盖了深度度量学习的训练技巧、核密度估计(KDE)的原理与应用、从KDE到KNN分类的推导、核回归方法(如Nadaraya-Watson均值估计器)、核方法的理论基础(如Mercer核与Mercer定理)、高斯过程与核方法的结合、支持向量机(SVM)在分类与回归中的应用,以及核方法的优缺点和典型应用场景。文章提供了理论分析与实际应用的结合,适用于希望深入了解核方法与距离度量学习的研究者与实践者。原创 2025-08-17 09:09:19 · 35 阅读 · 0 评论 -
56、基于示例的方法:距离度量学习全解析
本文详细解析了基于示例的距离度量学习方法,涵盖了线性和凸方法(如大间隔最近邻LMNN、邻域成分分析NCA、潜在重合分析LCA)、深度度量学习(DML)的基本原理,以及分类损失和排序损失(如成对损失、三元组损失、N-对损失)的核心思想与优化策略。文章还介绍了加速排序损失优化的技巧,如挖掘技术、代理方法和上界优化,并分析了不同方法的应用场景、实际操作注意事项及未来发展趋势。通过这些方法,可以有效提升机器学习模型在分类、相似性判断等任务中的性能。原创 2025-08-16 10:25:28 · 42 阅读 · 0 评论 -
55、语言模型与非参数模型技术解析
本文全面解析了语言模型与非参数模型的核心技术,重点介绍了GPT和T5等生成模型的原理、训练方法及其在多种NLP任务中的应用。同时,深入探讨了KNN分类器的工作原理、面临的问题及优化策略,并分析了距离度量学习的重要性及其在分类、聚类等任务中的应用。此外,还讨论了开放集识别等现实场景中的挑战性问题。这些内容为理解和应用语言模型与非参数模型提供了坚实的理论基础和实践指导。原创 2025-08-15 11:37:54 · 28 阅读 · 0 评论 -
54、序列神经网络:高效Transformer与无监督表示学习
本文详细探讨了序列神经网络中的高效Transformer架构以及无监督表示学习方法。首先介绍了多种提高Transformer计算效率的架构,如Performer、Linformer和Reformer等。随后深入分析了可学习的稀疏注意力模式、内存与循环方法、低秩与核方法等关键技术。此外,还讨论了ELMo和BERT等语言模型及其在NLP任务中的应用。最后,通过对比分析不同方法的优劣,并结合实际应用案例和未来发展趋势,为读者提供了全面的技术概览。原创 2025-08-14 13:01:09 · 42 阅读 · 0 评论 -
53、注意力机制与Transformer模型详解
本博客详细介绍了注意力机制与Transformer模型的核心概念和实现原理。内容涵盖注意力权重的计算、软注意力与硬注意力的区别、Transformer的编码器与解码器结构、位置编码的作用、多头注意力机制的设计,以及Transformer与CNN、RNN的对比分析。此外,还探讨了Transformer在图像处理中的应用(如ViT模型)、高效变体(如局部注意力模式)及其在不同任务中的选择建议。博客还总结了模型训练要点,并展望了注意力机制与Transformer的未来发展趋势。原创 2025-08-13 16:28:23 · 37 阅读 · 0 评论 -
52、一维卷积神经网络与注意力机制在序列处理中的应用
本文详细探讨了一维卷积神经网络(1D CNN)和注意力机制在序列处理中的应用。文章介绍了1D CNN在文本情感分类中的结构和实现,因果卷积和扩张卷积在序列生成中的作用,以及注意力机制在提升模型性能中的关键原理。此外,还讨论了这些模型在Seq2Seq、文本分类、文本对分类等任务中的实际应用,比较了不同模型的优缺点,并展望了未来发展方向,包括多模态融合、无监督学习和模型可解释性等。文章旨在为序列处理任务的研究和应用提供全面的技术参考。原创 2025-08-12 15:37:17 · 118 阅读 · 0 评论 -
51、循环神经网络(RNN)与一维卷积神经网络(1D CNN)详解
本文详细介绍了循环神经网络(RNN)和一维卷积神经网络(1D CNN)在序列数据处理中的应用。内容涵盖 RNN 的基本原理、训练方法(如时间反向传播)、存在的梯度问题及其解决方案(如 GRU 和 LSTM),并介绍了束搜索等序列生成方法。同时,对 1D CNN 的结构、在序列分类中的应用流程进行了说明,并对比了 RNN 和 1D CNN 的优劣势,帮助读者根据任务需求选择合适的模型。原创 2025-08-11 16:44:08 · 52 阅读 · 0 评论 -
50、卷积神经网络与循环神经网络在图像和序列处理中的应用
本文探讨了卷积神经网络(CNN)和循环神经网络(RNN)在图像和序列处理中的应用。重点介绍了CNN在图像生成和风格迁移方面的技术,如DeepDream和神经风格迁移,并详细分析了RNN在序列生成、分类和翻译任务中的使用方法与工作原理。文章还对两种模型在不同场景下的优劣进行了对比,结合实际应用案例分析了它们的具体用途,并展望了未来的发展趋势,如模型融合、高效优化算法和跨领域应用。原创 2025-08-10 14:13:22 · 39 阅读 · 0 评论 -
49、图像神经网络:从卷积到图像生成的全面解析
本文全面解析了图像神经网络的核心技术,从深度可分离卷积的计算优化,到卷积神经网络在多种判别式视觉任务(如图像标签、对象检测、实例分割、语义分割、人体姿态估计)中的应用。此外,文章还探讨了如何反转CNN进行图像生成,结合高斯先验和总变差先验等方法提高生成质量,并介绍了相关流程和代码示例。最后,对图像神经网络的未来发展进行了展望,包括计算效率提升、数据利用优化、生成质量增强以及多任务融合等方向。原创 2025-08-09 10:43:54 · 29 阅读 · 0 评论 -
48、图像分类与卷积扩展技术解析
本文详细解析了图像分类中常用的卷积神经网络架构及其卷积扩展技术。内容涵盖常见的归一化方法,如组归一化、滤波器响应归一化和无归一化网络的应用与选择;介绍了LeNet、AlexNet、GoogLeNet、ResNet、DenseNet等经典卷积网络架构的原理和特点;探讨了扩张卷积和转置卷积的实现与实际应用,以及神经架构搜索的发展趋势。通过对比不同架构的性能,为读者提供了选择合适模型的参考依据,并展望了未来自动化设计网络架构的方向。原创 2025-08-08 11:41:58 · 20 阅读 · 0 评论 -
47、图像神经网络:卷积神经网络基础详解
本文详细介绍了卷积神经网络(CNN)的基础知识,包括卷积层、池化层和归一化层的核心概念与作用。同时,文章还讨论了不同类型的归一化方法(如批量归一化、层归一化、实例归一化)及其适用场景,并提供了构建完整CNN模型的设计步骤与优化技巧。通过理论与实例结合,帮助读者深入理解CNN在图像处理中的工作原理与实际应用。原创 2025-08-07 11:39:51 · 122 阅读 · 0 评论 -
46、神经网络的正则化与不同类型前馈网络
本文深入探讨了神经网络中的正则化方法及其不同类型的前馈网络模型,包括贝叶斯神经网络(BNN)通过参数边缘化避免过拟合的原理,以及随机梯度下降(SGD)在优化过程中带来的隐式正则化效果。文章还详细介绍了径向基函数网络(RBF)在回归与分类任务中的应用,专家混合模型(MoE)对一对多函数关系的处理,以及卷积神经网络(CNN)在图像数据上的优势。通过性能对比、适用场景分析和代码示例,为模型选择提供了理论依据与实践指导。最后,文章总结了各类模型的特点,并展望了未来发展方向。原创 2025-08-06 12:40:14 · 25 阅读 · 0 评论 -
45、结构化数据神经网络的训练与正则化
本文详细介绍了结构化数据神经网络的训练与正则化方法。内容涵盖常用的激活函数及其选择策略,如ReLU、Sigmoid、Swish等,讨论了非饱和激活函数的优势及应用。文章还介绍了残差连接的原理及其对缓解梯度消失的作用,以及参数初始化的重要性,并比较了Xavier、He、LeCun等初始化方法。此外,文章详细解析了并行训练策略,包括模型并行和数据并行,并探讨了多种正则化技术,如早停法、权重衰减、Dropout、稀疏DNN等,最后展望了神经网络训练与正则化领域的未来发展趋势。原创 2025-08-05 16:56:34 · 78 阅读 · 0 评论 -
44、结构化数据的神经网络:反向传播与训练
本博客深入探讨了神经网络在处理结构化数据时的核心算法——反向传播,以及训练神经网络的实用技巧。文章详细介绍了前向与反向模式微分的原理及计算复杂度,并结合多层感知机(MLP)展示了反向传播的具体实现。针对训练过程中常见的梯度消失和梯度爆炸问题,提出了修改激活函数和调整网络架构等解决方案。此外,还讨论了过拟合、参数初始化、计算图优化以及现代深度学习框架中的自动微分技术,为读者提供了完整的神经网络训练方法论。原创 2025-08-04 14:40:47 · 20 阅读 · 0 评论 -
43、多层感知机(MLPs)全解析
本文全面解析了多层感知机(MLPs)的核心概念、应用场景及其优化方法。内容涵盖激活函数的选择与问题、MLP在分类、回归及多个领域中的应用,以及深度学习革命的推动因素。此外,还探讨了MLP的训练技巧、与其他模型的融合趋势及其在AI未来发展中的潜力。通过实例分析展示了MLP在图像分类、文本处理、异方差回归、推荐系统和医疗诊断中的强大能力,为读者提供了理论与实践相结合的深度学习指南。原创 2025-08-03 12:36:53 · 39 阅读 · 0 评论 -
42、广义线性模型与结构化数据神经网络
本文介绍了广义线性模型(GLM)及其在不同数据分布下的应用,包括线性回归、二项式回归和泊松回归。文章还讨论了GLM的非规范链接函数和最大似然估计的优化方法,并通过保险索赔预测案例展示了其实际效果。此外,文章探讨了结构化数据神经网络的构建,重点介绍了多层感知机(MLP)的基本原理、激活函数的选择、深度神经网络的训练流程、应用领域及面临的挑战。原创 2025-08-02 12:59:01 · 33 阅读 · 0 评论 -
41、贝叶斯线性回归与广义线性模型解读
本文深入解读了贝叶斯线性回归与广义线性模型的核心概念、数学推导及实际应用。内容涵盖异常值处理方法(如RANSAC与迭代方案)、贝叶斯框架下的参数后验分布计算、数据处理技巧(如数据中心化与多重共线性处理)、自动相关性确定(ARD)方法,以及广义线性模型的常见形式(如高斯回归、逻辑回归、泊松回归)及其参数估计方法。此外,还通过示例和练习展示了这些模型在实际问题中的应用价值,如医学预测、金融信用评分和市场营销中的客户行为预测等。文章最后比较了广义线性模型与其他机器学习模型的优劣,并展望了其未来发展方向,为读者提供原创 2025-08-01 16:27:38 · 36 阅读 · 0 评论 -
40、线性回归:从基础到高级方法解析
本文详细解析了线性回归从基础到高级的方法,包括弹性网络、套索回归和岭回归的结合与应用,介绍了多种优化算法如坐标下降法、投影梯度下降、近端梯度下降和LARS算法。同时讨论了回归样条(包括B样条和平滑样条)以及广义可加模型(GAM)的使用场景和特点。针对数据中存在离群值的情况,还探讨了稳健线性回归的方法,如拉普拉斯似然、学生-t似然、Huber损失和RANSAC算法。这些方法各有优劣,适用于不同的实际问题和数据特征。原创 2025-07-31 12:23:32 · 30 阅读 · 0 评论 -
39、深入理解Lasso回归:原理、应用与优势
本文深入探讨了Lasso回归的原理、应用及其优势。首先介绍了经验贝叶斯方法选择超参数λ的原理,并与交叉验证进行了比较。随后详细解释了Lasso回归的基本概念、ℓ1正则化的贝叶斯解释以及其产生稀疏解的机制。通过几何和优化理论的角度,分析了Lasso与岭回归在稀疏性上的差异。此外,还讨论了硬阈值与软阈值的区别、正则化路径的性质,以及Lasso在变量选择一致性方面的表现。最后介绍了组Lasso这一扩展方法,用于处理具有组结构的变量,并通过实验验证其有效性。文章结合理论推导与实例分析,帮助读者全面理解Lasso回归原创 2025-07-30 09:30:47 · 60 阅读 · 0 评论
分享