cake8
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
27、有限域上单项式置换的循环分解研究
本文研究了有限域上由单项式生成的置换的循环分解特性,给出了置换分解为相同长度循环的充要条件,并提供了计算此类置换单项式数量的公式。研究聚焦于仅固定0、1、-1等少数元素的置换,因其具有良好的分散性,适用于Turbo码中交织器的构造。通过结合数论工具如欧拉函数、元素阶和中国剩余定理,提出了一类可实时生成的确定性交织器构造方法,并分析了其在扩展因子、分散因子及编码性能方面的表现。结果表明,某些特定循环长度的构造性能与随机交织器相当甚至更优,为Turbo码性能预测和优化提供了新思路。原创 2025-10-23 04:48:50 · 33 阅读 · 0 评论 -
26、向量函数覆盖序列与有限域uq - 尖锐子集研究
本文研究了向量函数的覆盖序列及其广义形式,探讨了其在密码分析中构造有效区分器的应用,并引入了有限域中的uq-尖锐子集概念。通过定义和命题分析,揭示了uq-尖锐子集的性质,并利用该概念为经典Cauchy-Davenport定理提供了新的证明方法。研究表明,覆盖序列比高阶结构提供更多信息,基于广义覆盖序列的区分器更具优势;同时,uq-尖锐子集为有限域子集的研究开辟了新路径。未来工作包括深入探索uq-尖锐子集的结构、寻找更多uq-尖锐多项式家族及明确其存在条件。原创 2025-10-22 09:37:21 · 20 阅读 · 0 评论 -
25、向量函数与覆盖序列:理论与应用
本文深入探讨了向量函数的覆盖序列在密码学中的理论与应用,重点分析了其基本性质、稳定性以及在构造鉴别器进行最后一轮攻击中的关键作用。通过命题和推论揭示了覆盖序列在函数复合与拼接下的传递性,并详细阐述了如何利用覆盖序列区分简化密码与随机置换,进而实施密钥恢复攻击。文章还结合AES和DES等实际密码系统,展示了该理论在现实场景中的影响与应用流程,最后展望了未来在算法优化、密码设计与攻击防御方面的研究方向。原创 2025-10-21 10:04:22 · 24 阅读 · 0 评论 -
24、向量函数的构造与覆盖序列研究
本文系统研究了向量函数的构造方法与覆盖序列理论。介绍了构造2、构造3和构造4等多种向量函数构造技术,分析了其在弹性、非线性度和代数度等方面的性能,并对比了不同构造方法的适用场景。同时,深入探讨了布尔函数与多输出函数的覆盖序列定义及其在判断函数平衡性和弹性方面的应用。通过定理与推论揭示了覆盖序列与函数性质之间的内在联系,为密码学中高安全性S盒的设计提供了理论支持。未来研究可进一步优化构造方法并拓展覆盖序列的应用范围。原创 2025-10-20 11:41:18 · 20 阅读 · 0 评论 -
23、向量函数与覆盖序列:密码学中的关键概念与构造方法
本文系统探讨了密码学中高弹性与高非线性向量函数的构造方法,重点分析了Maiorana-MacFarland类函数在布尔和多输出情形下的弹性与非线性度性质,并给出了基于线性码的构造方案。同时,文章介绍了覆盖序列在攻击使用此类函数的迭代分组密码中的应用原理与流程,揭示了函数结构可能带来的安全风险,为密码函数的设计与安全性评估提供了理论依据和实践指导。原创 2025-10-19 13:50:20 · 22 阅读 · 0 评论 -
22、有限域上本原多项式及向量函数相关研究
本文深入研究了有限域上的本原多项式存在性问题,针对不同素数幂q(如2,3,4,5及q≥7)给出了本原多项式在首m个系数预先指定情况下的存在条件,并通过理论推导、筛选技术和计算机辅助计算(MAPLE)验证了定理的成立。同时,探讨了向量函数与覆盖序列在分组密码和流密码中的应用,指出其在抵抗线性与差分攻击中的关键作用。研究总结了现有构造方法并推广了Maiorana-MacFarland类S盒构造,提出覆盖序列的新性质及其对密码安全的影响,为密码学设计提供了理论基础与实践工具。未来方向包括优化存在性条件、拓展覆盖序原创 2025-10-18 16:31:37 · 80 阅读 · 0 评论 -
21、小域上的本原多项式研究
本文研究了小域(如F_2、F_3、F_4、F_5)上本原多项式中系数可预先指定的存在性问题。通过简化Fan-Han方法,并结合Winnie Li在Galois环上的混合特征和估计与筛法技术,证明了在二进制、三进制及一般素数幂域上,当下标满足一定条件时,存在前m个或后m个系数可任意指定的本原多项式。文章给出了三个主要定理,分别对应q2、q3和q>3的情形,并对特殊例外情况(如F_4上三次本原多项式)进行了分析。最后通过流程图展示了研究逻辑,并提出了未来可能的研究方向。原创 2025-10-17 11:59:10 · 30 阅读 · 0 评论 -
20、《ZZp²上的格雷映射、(u|u + v)构造与循环码》
本文研究了ZZp²上的格雷映射、(u|u + v)构造与循环码之间的内在关系。通过引入广义格雷映射和推广的(u|u + v)构造方法,证明了在特定条件下格雷映射像与Γ构造结果的等价性,并进一步建立了由IFp-循环码Ci构造具有特定生成多项式的循环码C的理论框架。结合示例与流程图,展示了从基本循环码出发,经D构造、格雷映射及p-置换逆操作最终获得目标循环码的完整过程,揭示了代数编码中不同结构间的深刻联系,为重复根循环码的研究与应用提供了新途径。原创 2025-10-16 16:06:49 · 50 阅读 · 0 评论 -
19、有限域多项式与循环码相关研究
本文围绕有限域上的多项式性质与循环码构造展开深入研究,重点分析了多项式的不可分解性、无平方因子条件及判别式特征,并探讨了其在不同参数下的行为。结合Gray映射与'(u|u+v)'构造方法,揭示了二元情况下循环码与Z4码之间的等价关系,并进一步将该框架推广至p-元情形,提出基于p-置换的广义构造方式。通过理论分析与具体示例验证,建立了F_p上重复根循环码与Z_{p^2}上线性码之间的联系,丰富了循环码的构造理论,为编码理论在通信与密码学中的应用提供了新的视角和工具。原创 2025-10-15 11:12:34 · 37 阅读 · 0 评论 -
18、某些本原三元BCH码的覆盖半径研究
本文研究了本原三元BCH码在特定设计距离下的覆盖半径问题,重点分析了当设计距离为8和14时的情形。通过将编码理论问题转化为有限域上的多项式分解问题,并结合牛顿恒等式、伽罗瓦群理论以及不可分解有理函数等代数工具,建立了确保多项式完全分解的充分条件。利用引理方法分析不同情况下的互素性、不可分解性和判别式性质,最终证明:当m≥20且为偶数时,δ8的码覆盖半径为7;当m≥46时,δ14的码覆盖半径为13。该方法为研究更一般情形下的三元BCH码覆盖半径提供了理论框架与技术路径。原创 2025-10-14 14:10:16 · 31 阅读 · 0 评论 -
17、有限域上某些塔的构造
本文研究了有限域上两类递归定义的函数域塔:费马塔和相对不分歧塔。通过分析其分歧结构、完全分裂性质以及渐近行为,给出了塔能被递归定义的充分条件,并证明了部分塔具有正的渐近界λ(T)。特别地,对于由y^m 1 - x^m/(x-1)^m定义的塔,证明了其在F₂之上不分歧且存在大量完全分裂的位,从而获得其渐近性能下界。这些结果对构造渐近良好的代数几何码具有重要意义。原创 2025-10-13 12:01:48 · 41 阅读 · 0 评论 -
16、矩阵构造与函数域塔相关研究
本文研究了无奇异子矩阵的矩阵构造及其在快速擦除码中的应用,提出了一类基于范德蒙德矩阵的优化构造方法,实现了优于柯西矩阵的编码解码复杂度。同时,探讨了函数域塔中处处分歧的结构性质,证明了存在满足渐近条件下正有理点密度和有限亏格增长的塔,并提出了将两个定理结合的开放问题,为编码理论与代数几何的交叉研究提供了新方向。原创 2025-10-12 13:35:39 · 31 阅读 · 0 评论 -
15、相互无偏基与无奇异方子矩阵的矩阵构造
本文探讨了量子信息理论中的相互无偏基与计算机通信中无奇异方子矩阵的矩阵构造。在相互无偏基方面,针对奇数和偶数素数幂维度,分别基于Weil和引理与有限伽罗瓦环构造极值集合;对于非素数幂维度,给出了下界估计并讨论了相关猜想与开放问题。在矩阵构造方面,介绍了系统MDS擦除码的生成矩阵设计,利用Cauchy矩阵及新型$A^{-1}B$结构确保所有方子矩阵非奇异。文章总结了不同情况下的构造方法与关键工具,展望了未来在量子密码学与可靠通信中的理论与应用发展方向。原创 2025-10-11 11:34:08 · 28 阅读 · 0 评论 -
14、双变量zeta函数组合学与相互无偏基构造
本文探讨了双变量zeta函数在组合学中的应用,重点分析其与线性码和支持权重枚举器的关系,并通过代数几何码建立了曲线上的秩多项式与代码参数之间的联系。同时,文章介绍了相互无偏基在量子力学中的定义、性质及其构造问题,尤其是在素数幂维度下的极值构造。进一步地,揭示了代码权重分布与相互无偏基之间的潜在关联,指出这些数学结构在量子信息理论中的重要应用价值。原创 2025-10-10 10:20:59 · 36 阅读 · 0 评论 -
13、双变量zeta函数的组合数学
本文探讨了双变量zeta函数在组合数学中的应用,涵盖二元码与拟阵的关系、代数曲线上特殊除子的性质、曲线和线性码的zeta函数构造,以及归一化秩函数与格林定理的联系。通过实例分析和理论推导,揭示了zeta函数在编码理论与代数几何之间的桥梁作用,并总结了相关概念的内在关联与未来研究方向。原创 2025-10-09 10:53:24 · 26 阅读 · 0 评论 -
12、双变量zeta函数的组合学
本文探讨了双变量zeta函数在组合学中的应用,重点研究拟阵、线性码和代数曲线之间的深层联系。通过秩多项式与归一化秩函数的转换,结合德宁格变换,揭示了线性码的格林定理与zeta函数之间的等价性。文章还介绍了拟阵在图论和编码理论中的应用,包括图着色、流模计算及拟阵游戏,并建立了代数几何码的拟阵结构与曲线zeta函数的关系,为研究码的权重分布提供了新视角。原创 2025-10-08 12:16:11 · 29 阅读 · 0 评论 -
11、有限域上随机多项式的特征与应用
本文系统探讨了有限域上随机多项式的结构特征及其在组合数学与密码学中的应用。文章首先分析了组合结构中随机多项式的期望、方差与高阶矩,随后详细阐述了因式分解的三个阶段:ERF、DDF和EDF,并讨论了各阶段的算法复杂度与优化策略。进一步,文章介绍了区间因式分解方法及其在平衡因子分布方面的优势。在应用方面,重点聚焦于离散对数问题,涵盖指数微积分方法、Waterloo算法以及非光滑因子基方法,并结合渐近分析技术评估其效率。最后,总结了随机多项式的统计特性,如不可约性概率、不可约因子数量与大小分布,并指出多项式求根、原创 2025-10-07 15:32:27 · 25 阅读 · 0 评论 -
10、有限域上随机多项式的特征与应用
本文探讨了有限域 $F_q$ 上随机一元多项式的特征及其在算法与密码学中的应用。通过解析组合学方法,分析了随机多项式的不可约因式分解行为,包括不可约因式数量的期望与分布、无平方因子性、最小/最大次数因式等渐近性质。文章介绍了Rabin和Ben-Or等不可约性测试算法,并讨论了多项式因式分解的平均情况分析。此外,还阐述了随机多项式在离散对数求解、密钥生成和加密算法中的重要作用,最后总结了当前研究的成果并展望了未来的研究方向。原创 2025-10-06 13:19:39 · 35 阅读 · 0 评论 -
9、伪随机数序列的格轮廓与线性复杂度轮廓及辛展开研究
本文研究了伪随机数序列的格轮廓与线性复杂度轮廓之间的内在关系,提出了多个关于两者动态规律的命题、引理与定理,并通过示例分析验证其有效性。进一步地,文章给出了格轮廓的完整内在刻画条件,建立了其可实现性的充要条件。在辛展开方面,探讨了其与置换多项式的深刻联系,介绍了多种已知的辛展开构造,包括Kantor、Thas-Payne、Ree-Tits slice和Tits-Lüneburg等类型,并证明了一类低度数多项式在特定条件下为置换多项式。最后,对可分多项式情形下的辛展开进行了分类,揭示了其仅能属于正则、Kant原创 2025-10-05 15:15:51 · 18 阅读 · 0 评论 -
8、某些多项式的互不可约性与伪随机数序列的格轮廓和线性复杂度轮廓
本文研究了线性反馈移位寄存器(LFSRs)与线性变换移位寄存器(TSRs)的结构特性,重点探讨了LFSRs在固定阶和变阶情况下的配对关系及其对寻找不可约TSR的计算优势。通过分析多项式的互不可约性,提出利用配对关系减少冗余计算的方法。同时,深入研究了伪随机数序列的格轮廓与线性复杂度轮廓的定义、性质及相互关系,揭示了其在评估序列结构质量和密码学安全性中的重要作用。结合实例分析与理论推导,展示了如何应用这些工具优化序列设计,并提出了未来在不变多项式刻画、新型线性分式变换影响等方面的潜在研究方向。原创 2025-10-04 10:39:46 · 24 阅读 · 0 评论 -
7、超椭圆曲线的卡蒂尔 - 马尼恩算子计算与点计数算法
本文研究了定义在有限域上的超椭圆曲线的卡蒂尔-马尼恩算子计算方法,并基于哈塞-维特矩阵与弗罗贝尼乌斯自同态特征多项式的关系,提出了一种高效的点计数算法。通过引入满足线性递归关系的系数序列并结合p进提升技术,在固定精度下实现了对特征多项式模p的快速计算。文章详细分析了算法的时间与存储复杂度,并验证了其在亏格较小情况下的优越性能。实际计算示例表明该算法能够处理大素数域上的高安全性曲线,适用于密码学应用中的群阶计算。此外,该方法可推广至更广泛的代数曲线情形。原创 2025-10-03 13:58:03 · 37 阅读 · 0 评论 -
6、多项式求值与线性序列计算的高效算法
本文介绍了多项式多点求值、求值点平移以及线性序列特定项计算的高效算法,详细分析了各类算法的时间与空间复杂度。针对不同场景,如常数矩阵、等差数列求值点和一般线性递推,提出了优化策略,并总结了现有算法在密码学、信号处理和数值分析中的应用前景。同时指出了降低时间复杂度的开放问题,为后续研究提供了方向。原创 2025-10-02 15:52:02 · 29 阅读 · 0 评论 -
5、广义伽罗瓦环与线性递归序列的研究
本文研究了广义伽罗瓦环的左右循环条件,证明了顶部结合GGR是左右循环的当且仅当其临界因子环非交换。同时改进了具有多项式系数的线性递归序列的计算算法,采用小步-大步技术并优化时间和空间复杂度,在等差数列上利用差分方法高效计算多项式平移值。研究成果应用于超椭圆曲线的Cartier-Manin算子计算,显著提升了Hasse-Witt矩阵的计算效率,复杂度由O(p)降低至O(√p)(含对数因子),在密码学与计算代数领域具有重要应用价值。原创 2025-10-01 13:29:36 · 36 阅读 · 0 评论 -
4、广义伽罗瓦环的循环条件研究
本文系统研究了广义伽罗瓦环(GGR)的右循环与右-左循环条件。在右循环GGR方面,给出了元素右阶的上界,明确了右循环的充要条件,并证明了奇特征下右本原半域对应的GGR中存在最大右阶元素。在右-左循环顶结合GGR方面,通过引入临界因子和提升性质,将问题转化为小特征情形与有限域上矩阵问题,建立了从临界因子循环性推导整体循环性的方法。研究结合代数结构、矩阵理论与归纳论证,深化了对GGR乘法结构的理解,并为密码学与编码理论的应用提供了理论基础。原创 2025-09-30 15:46:50 · 27 阅读 · 0 评论 -
3、共线点的Weierstrass半群与广义伽罗瓦环的循环性研究
本文研究了Hermitian曲线上共线点的Weierstrass半群结构,通过定理和示例确定了多点Weierstrass半群中极小生成元集\(\Gamma^+_m\)的具体形式。同时探讨了广义伽罗瓦环(GGR)及其与有限半域的关系,分析了顶结合非结合GGR的乘法结构与循环性条件。研究结合Teichmüller坐标集、理想结构和有限域性质,提出了判断GGR循环性的可能路径,并展望其在编码理论与密码学中的应用价值。原创 2025-09-29 12:59:51 · 29 阅读 · 0 评论 -
2、循环生成器自相关与Weierstrass半群研究
本文研究了循环生成器的自相关性质与Weierstrass半群的结构。在循环生成器方面,分析了AA_d(q,t,u,v)的估计及其与循环数的关系,并比较了不同序列的随机性指标;在Weierstrass半群方面,通过定义Γ_l^+和Γ_l,刻画了多点Weierstrass半群的生成机制,并给出了基于有理函数空间维数的等价条件。结果表明,这些理论在密码学序列设计和代数几何码构造中具有重要应用价值。原创 2025-09-28 15:28:24 · 71 阅读 · 0 评论 -
1、有限域上循环生成器的自相关性研究
本文深入研究了有限域上循环生成器的自相关性,涵盖了精确自相关值的计算、任意有限域上的自相关界、非q-1因子模数下的自相关分析以及非周期自相关的探讨。通过理论推导与证明,揭示了循环生成器在密码学中的优良特性,特别是低自相关性对伪随机序列生成的重要性。研究成果在流密码设计、安全性评估及离散对数应用中具有重要价值,并为未来在扩展域和量子密码学中的研究提供了方向。原创 2025-09-27 16:20:25 · 21 阅读 · 0 评论
分享