机器学习-knn近邻分类算法

本文详细介绍了kNN近邻分类算法的原理,包括算法优缺点和变种。通过案例展示了如何使用Python实现kNN,并利用sklearn库进行分类。通过红酒和乳腺癌数据集的应用,讨论了k值选择的重要性,并通过交叉验证找到最优k值。最后,探讨了数据归一化对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 算法原理
本质是通过距离(欧式距离)判断两个样本是否相似,如果距离够近就认为他们足够相似属于同一类别
###算法优缺点:主要参数k(标记数据周围几个数作为参考对象,需要根据数据来决定)
    k值越大,模型偏差大,对噪声数据不敏感。可能造成欠拟合
    k值越小,模型方差就会越大,容易过拟合。
算法变种一:针对不同距离的邻居指定不同的距离权重,通常距离越近权重越高,通过weights参数来实现。
算法变种二:使用一定半径内的点取代距离最近的k个点
    在scikit_learn中,RadiusNeighborsClassifiter 实现了这种算法,当数据采样不均匀时,这种算法性能更好。
   
#案例实现
##导入相关包
###全部行都能输出
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity="all"

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#解决坐标轴刻度负号乱码
plt.rcParams['axes.unicode_minus']=False
#解决中文乱码
plt.rcParams['font.sans-serif']=['simhei']
#设置背景样式
plt.style.use('ggplot')

#构建分类好的原始数据集
#先随机设置10个样本点表示10杯酒,为方便验证使用dict构建数据集,
#然后转化为DataFrame格式
rowdata = {'颜色深度':[14.23,13.2,13.16,14.37,13.24,12.07,12.43,11.79,12.37,12.04],
          '酒精浓度':[5.64,4.38,5.68,4.80,4.32,2.76,3.94,3.1,2.12,2.6],
          '品种':[0,0,0,0,0,1,1,1,1,1]}
#0 代表黑皮诺品种,1代表赤霞珠
wine_data = pd.DataFrame(rowdata)
wine_data

#特征作为x,y作为标签(类别)
x = np.array(wine_data.iloc[:,0:2])#这为什么要把dataframe转为一维数组,因为只需要里面的数值,不需要索引
y = np.array(wine_data.iloc[:,-1])
#探索,假如给出新的数据,判断红酒的类别
new_data = np.array([12.03,4.1])
#画出标签y=1的赤霞珠的散点图
plt.scatter(x[y==1,0], x[y==1,1],color='red',label='赤霞珠')
#方括号内为列表表达式,x是一维数组,取x数组的横坐标和纵坐标。
plt.scatter(x[y==0,0],x[y==0,1],color='purple',label='黑皮诺')
plt.scatter(new_data[0],new_data[1],color='yellow')
new_data
plt.xlabel('酒精浓度')
pl

### 关于头歌平台中KNN算法机器学习教程与实例 #### 头歌平台概述 头歌(Tougo)是一个专注于计算机科学教育的学习平台,提供丰富的在线课程资源和实践环境。对于机器学习领域的内容,尤其是像KNN这样经典的算法,通常会通过理论讲解、代码实现以及实际应用案例相结合的方式进行教学。 #### KNN算法简介 KNN(K-Nearest Neighbors)是一种基于实例的学习方法,既可用于分类也可用于回归分析。其核心思想是:给定一个测试样本,在训练集中找到与其最近的K个邻居,并依据这K个邻居的信息来进行决策[^2]。 #### KNN算法的主要步骤 1. 数据预处理阶段,包括标准化或归一化操作以消除不同特征间量纲差异的影响。 2. 计算待测样本到所有已知样本的距离,常用欧氏距离或其他形式的距离度量方式。 3. 找出距离最小的前K个样本作为近邻点集合。 4. 对于分类任务采用投票机制决定最终类别;而对于回归任务则取平均值或者加权平均值得出结果。 #### 距离计算公式示例 以下是两种常见距离公式的Python实现: ```python import numpy as np def euclidean_distance(x, y): """欧几里得距离""" return np.sqrt(np.sum((np.array(x) - np.array(y)) ** 2)) def manhattan_distance(x, y): """曼哈顿距离""" return np.sum(abs(np.array(x) - np.array(y))) ``` 上述函数分别实现了欧氏距离和曼哈顿距离的计算过程。 #### 实际应用场景举例 假设我们有一个简单的电影分类场景,其中每部影片由两个属性描述:“拥抱次数”和“打斗次数”。利用已有标注的数据集可以构建模型并预测未知标签的新样例所属类型[^4]。 #### 可能存在的挑战及优化方向 尽管KNN易于理解和实现,但在大规模数据集上的性能可能较差,因为每次都需要遍历整个数据库寻找最接近的邻居。因此可以通过KD树索引结构加速查询效率,或是引入降维技术减少维度灾难带来的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值