机器学习入门-线性模型(一)

本文介绍了机器学习中的线性模型,包括线性回归和对数几率回归的基础概念。线性回归通过最小化均方误差来确定模型参数,而对数几率回归则用于二分类任务,通过调整模型参数实现对样本作为正例可能性的预测。文中还提到了实战部分,提供了Logistic回归的实践应用案例。
摘要由CSDN通过智能技术生成

本次学习的内容是《机器学习》一书中的线性模型这一章节另外这一章节理论性的东西更多,所以还学习了《Machine Learning in Action》中的Logistic回归,实战了一些简单的例子作为互补参考。

代码以及测试用例:
https://github.com/CallMeSp/MachineLearning.git

正文

先说一个数学符号:
arg min f(x) 是指使得函数 f(x) 取得其最小值的所有自变量 x 的集合。比如,函数 cos(x) 在 ±π、±3π、±5π、……处取得最小值(-1),则 argmin cos(x) = {±π, ±3π, ±5π, …}。
如果函数 f(x) 只在一处取得其最小值,则 argmin f(x) 为单点集.

基本形式

给定d个属性描述的示例 x=x1;x2;...;xd) x = ( x 1 ; x 2 ; . . . ; x d ) ,其中xi是x在第i个

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值