积性函数前缀和,这东西似乎非常恐怖(特别是有公式恐惧症的人),也确实很恶心。
实际上,还是比较套路的,只要推公式时试图往套路上靠,推出来的概率就比较大。
看个例子来了解第一个套路
###求莫比乌斯函数的前缀和
利用性质
∑
d
∣
n
μ
(
d
)
=
[
n
=
1
]
\sum_{d|n} \mu(d)=[n=1]
d∣n∑μ(d)=[n=1]
可以得到
μ
(
n
)
=
[
n
=
1
]
−
∑
d
∣
n
,
d
<
n
μ
(
d
)
\mu(n)=[n=1]-\sum_{d|n,d<n}\mu(d)
μ(n)=[n=1]−d∣n,d<n∑μ(d)
前缀和:
S
(
n
)
=
∑
i
=
1
n
μ
(
i
)
=
1
−
∑
i
=
1
n
∑
d
∣
i
,
d
<
i
μ
(
d
)
=
1
−
∑
i
d
=
2
n
∑
d
=
1
⌊
n
i
d
⌋
μ
(
d
)
=
1
−
∑
i
=
1
n
S
(
⌊
n
i
⌋
)
S(n)=\sum_{i=1}^n\mu(i)=1-\sum_{i=1}^n\sum_{d|i,d<i}\mu(d)\\=1-\sum_{\frac i d=2}^n\sum_{d=1}^{\left \lfloor {{\frac n {\frac i d}}}\right \rfloor}\mu(d)\\=1-\sum_{i=1}^n S\left(\left \lfloor{\frac n i}\right \rfloor\right)
S(n)=i=1∑nμ(i)=1−i=1∑nd∣i,d<i∑μ(d)=1−di=2∑nd=1∑⌊din⌋μ(d)=1−i=1∑nS(⌊in⌋)
利用分块优化可以, ∑ i = 1 n \sum_{i=1}^n ∑i=1n降为 O ( n 1 2 ) O(n^{\frac 1 2}) O(n21),算上递归计算S,总时间复杂度 O ( n 1 2 n 1 4 . . . . ) = O ( n 3 4 ) O(n^{\frac 1 2}n^{\frac 1 4}....)=O(n^{\frac3 4}) O(n21n41....)=O(n43)($\frac 1 8 太 小 忽 略 ) 这 还 是 过 不 到 , 我 们 可 以 提 前 太小忽略) 这还是过不到,我们可以提前 太小忽略)这还是过不到,我们可以提前O(n) 预 处 理 一 段 S , 使 得 递 归 次 数 减 少 。 经 玄 学 计 算 , 只 要 预 处 理 前 预处理一段S,使得递归次数减少。 经玄学计算,只要预处理前 预处理一段S,使得递归次数减少。经玄学计算,只要预处理前n^{\frac 2 3} 个 值 , 时 间 复 杂 度 最 低 , 为 个值,时间复杂度最低,为 个值,时间复杂度最低,为O\left(n^{\frac 2 3}\right)$
代码:
#include<cstdio>
#include<map>
using namespace std;
const long long MAXN=5000000;
long long sumu[MAXN+10];
map<long long,long long> S;
void init_sumu()
{
static long long mu[MAXN],prime[MAXN],pcnt=0;
static bool npr[MAXN]={false};
mu[1]=1;npr[1]=true;
for(long long i=2;i<MAXN;i++)
{
if(!npr[i])
{
prime[++pcnt]=i;
mu[i]=-1;
}
for(long long j=1;j<=pcnt&&1LL*prime[j]*i<MAXN;j++)
{
npr[i*prime[j]]=true;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
sumu[0]=0;
for(long long i=1;i<MAXN;i++)
sumu[i]=sumu[i-1]+mu[i];
}
long long solve(long long n)
{
if(n<MAXN)
return sumu[n];
if(S.count(n))
return S[n];
long long res=1,nxt=0;
for(long long k=2;k<=n;)
{
nxt=n/(n/k);
res-=(nxt-k+1)*solve(n/k);
k=nxt+1;
}
S[n]=res;
return res;
}
int main()
{
init_sumu();
long long a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",solve(b)-solve(a-1));
return 0;
}
###套路
试图把要求前缀和的函数
f
f
f,使
∑
d
∣
n
f
(
d
)
\sum_{d|n}f(d)
∑d∣nf(d)为一个与d无关的值A,然后用
A
−
∑
d
∣
n
,
d
<
n
f
(
d
)
A-\sum_{d|n,d<n}f(d)
A−∑d∣n,d<nf(d),即可得到
f
(
n
)
f(n)
f(n),用这个公式求前缀和,既可以递归缩小规模,用杜教筛
O
(
n
2
3
)
O\left(n^{\frac 2 3}\right)
O(n32)解决。