积性函数前缀和(杜教筛)

积性函数前缀和,这东西似乎非常恐怖(特别是有公式恐惧症的人),也确实很恶心。
实际上,还是比较套路的,只要推公式时试图往套路上靠,推出来的概率就比较大。

看个例子来了解第一个套路

###求莫比乌斯函数的前缀和

利用性质
∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n} \mu(d)=[n=1] dnμ(d)=[n=1]
可以得到
μ ( n ) = [ n = 1 ] − ∑ d ∣ n , d < n μ ( d ) \mu(n)=[n=1]-\sum_{d|n,d<n}\mu(d) μ(n)=[n=1]dn,d<nμ(d)
前缀和:
S ( n ) = ∑ i = 1 n μ ( i ) = 1 − ∑ i = 1 n ∑ d ∣ i , d < i μ ( d ) = 1 − ∑ i d = 2 n ∑ d = 1 ⌊ n i d ⌋ μ ( d ) = 1 − ∑ i = 1 n S ( ⌊ n i ⌋ ) S(n)=\sum_{i=1}^n\mu(i)=1-\sum_{i=1}^n\sum_{d|i,d<i}\mu(d)\\=1-\sum_{\frac i d=2}^n\sum_{d=1}^{\left \lfloor {{\frac n {\frac i d}}}\right \rfloor}\mu(d)\\=1-\sum_{i=1}^n S\left(\left \lfloor{\frac n i}\right \rfloor\right) S(n)=i=1nμ(i)=1i=1ndi,d<iμ(d)=1di=2nd=1dinμ(d)=1i=1nS(in)

利用分块优化可以, ∑ i = 1 n \sum_{i=1}^n i=1n降为 O ( n 1 2 ) O(n^{\frac 1 2}) O(n21),算上递归计算S,总时间复杂度 O ( n 1 2 n 1 4 . . . . ) = O ( n 3 4 ) O(n^{\frac 1 2}n^{\frac 1 4}....)=O(n^{\frac3 4}) O(n21n41....)=O(n43)($\frac 1 8 太 小 忽 略 ) 这 还 是 过 不 到 , 我 们 可 以 提 前 太小忽略) 这还是过不到,我们可以提前 O(n) 预 处 理 一 段 S , 使 得 递 归 次 数 减 少 。 经 玄 学 计 算 , 只 要 预 处 理 前 预处理一段S,使得递归次数减少。 经玄学计算,只要预处理前 S使n^{\frac 2 3} 个 值 , 时 间 复 杂 度 最 低 , 为 个值,时间复杂度最低,为 O\left(n^{\frac 2 3}\right)$

代码:

#include<cstdio>
#include<map>
using namespace std;
const long long MAXN=5000000;

long long sumu[MAXN+10];
map<long long,long long> S;

void init_sumu()
{
	static long long mu[MAXN],prime[MAXN],pcnt=0;
	static bool npr[MAXN]={false};
	mu[1]=1;npr[1]=true;
	for(long long i=2;i<MAXN;i++)
	{
		if(!npr[i])
		{
			prime[++pcnt]=i;
			mu[i]=-1;
		}
		for(long long j=1;j<=pcnt&&1LL*prime[j]*i<MAXN;j++)
		{
			npr[i*prime[j]]=true;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	sumu[0]=0;
	for(long long i=1;i<MAXN;i++)
		sumu[i]=sumu[i-1]+mu[i];
}

long long solve(long long n)
{
	if(n<MAXN)
		return sumu[n];
	if(S.count(n))
		return S[n];
	long long res=1,nxt=0;
	for(long long k=2;k<=n;)
	{
		nxt=n/(n/k);
		res-=(nxt-k+1)*solve(n/k);
		k=nxt+1;
	}
	S[n]=res;
	return res;
}

int main()
{
	init_sumu();
	long long a,b;
	scanf("%lld%lld",&a,&b);
	printf("%lld\n",solve(b)-solve(a-1));
	return 0;
}

###套路
试图把要求前缀和的函数 f f f,使 ∑ d ∣ n f ( d ) \sum_{d|n}f(d) dnf(d)为一个与d无关的值A,然后用 A − ∑ d ∣ n , d < n f ( d ) A-\sum_{d|n,d<n}f(d) Adn,d<nf(d),即可得到 f ( n ) f(n) f(n),用这个公式求前缀和,既可以递归缩小规模,用杜教筛 O ( n 2 3 ) O\left(n^{\frac 2 3}\right) O(n32)解决。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CaptainHarryChen

随便

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值