【CodeForces840C】On the Bench(容斥、DP)

题目大意

m(1m300) m ( 1 ≤ m ≤ 300 ) 个数 ai(1ai109) a i ( 1 ≤ a i ≤ 10 9 ) ,求有多少个排列(每个数都不相同,即使它们值一样),满足相邻两个数相乘的积不为完全平方数。

题解

将每个 ai a i 的平方因子全部除掉,剩下的数转换为一个经典问题:
n1 n 1 a1 a 1 n2 n 2 a2 a 2 …… nN n N aN a N ,每个数都不相同,求使得相邻两个数不相同的排列有几个。
利用容斥原理,用 fk f k 表示至少有 k k 对相邻的数相同。
答案ans=f0f1+f2f3+f4...+(1)m1fm1

利用分块来求出“至少有 k k 个相邻的数相同”
dp[i][k]表示前 i i 种数分为k块,使得每一个块里面的数保证相同,并保证块与块之间没有顺序(可以理解为块总是按从小到大的排序)
这样 dp[N][k]×k! d p [ N ] [ k ] × k ! ,表示把所有数分为 k k 块的方案数,就保证了最多有k1对相邻数不同(块与块之间),也就是最多有 (n1)(k1)=nk ( n − 1 ) − ( k − 1 ) = n − k 对相邻数相同。
×k! × k ! 原因是 dp[N][k] d p [ N ] [ k ] 表示的块是无序的,乘以 k! k ! 得到它的全排列方案。

保证块与块之间无序可以这样理解:3个值相同的数(用 1,2,3 1 , 2 , 3 表示)分成两块,有这些分法

112233||||||231312323121 1 | 2 3 1 | 3 2 2 | 1 3 2 | 3 1 3 | 1 2 3 | 2 1

保证无序的意思就是把 1 2 | 3 1   2   |   3 看做与 3 | 1 2 3   |   1   2 是一种方案。

转移时,枚举将第 i i 种数,分为j

dp[i][k]=j=1kdp[i1][kj]×Cj1ni1×ni!j! d p [ i ] [ k ] = ∑ j = 1 k d p [ i − 1 ] [ k − j ] × C n i − 1 j − 1 × n i ! j !

Cj1ni1 C n i − 1 j − 1 利用隔板法,把 ni n i 个数分为 j j
除以j!表示使块无序
乘以 ni! n i ! ,因为每个数都不相同,所以还需乘以总排列数

代码

#include<cstdio>
#include<cstring>
#include<map>
using namespace std;
const int MAXN=305;
const int MOD=1000000007;

int pow_mod(int a,int b)
{
    int ret=1;
    while(b)
    {
        if(b&1)
            ret=(1LL*ret*a)%MOD;
        a=(1LL*a*a)%MOD;
        b>>=1;
    }
    return ret;
}

int n;
map<int,int> ni;
int fac[MAXN],inv[MAXN];
int C[MAXN][MAXN];
int dp[MAXN][MAXN];

int main()
{
    fac[0]=1;
    for(int i=1;i<MAXN;i++)
        fac[i]=(1LL*fac[i-1]*i)%MOD;
    inv[MAXN-1]=pow_mod(fac[MAXN-1],MOD-2);
    for(int i=MAXN-2;i>=1;i--)
        inv[i]=(1LL*inv[i+1]*(i+1))%MOD;

    C[0][0]=1;
    for(int i=1;i<MAXN;i++)
    {
        C[i][0]=1;
        for(int j=1;j<MAXN;j++)
            C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
    }

    scanf("%d",&n);
    for(int i=1,a;i<=n;i++)
    {
        scanf("%d",&a);
        for(int p=2;1LL*p*p<=a;p++)
            while(a%(p*p)==0)
                a/=p*p;
        ni[a]++;
    }

    dp[0][0]=1;
    map<int,int>::iterator it=ni.begin();
    int cnt=0;
    for(int i=1,num=it->second;it!=ni.end();it++,i++,num+=it->second,cnt++)
        for(int k=i;k<=num;k++)
            for(int j=1;j<=k&&j<=it->second;j++)
                dp[i][k]=(dp[i][k]+1LL*dp[i-1][k-j]*C[it->second-1][j-1]%MOD*fac[it->second]%MOD*inv[j]%MOD)%MOD;

    int ans=0;
    for(int k=n,flag=1;k>=1;k--,flag=-flag)
        ans=(ans+MOD+1LL*flag*dp[cnt][k]*fac[k]%MOD)%MOD;
    printf("%d\n",ans);

    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值