欧拉定理及扩展(附证明)

( a , m ) = 1 (a,m)=1 (a,m)=1,则满足 a φ ( m ) ≡ 1   ( m o d   m ) a^{\varphi (m)} \equiv 1\ (mod \ m) aφ(m)1 (mod m)

证明

设 与 m 互 质 的 数 为 b 1 , b 2 , b 3 , . . . , b φ ( m ) ∵ ( a , m ) = 1 ∴ a b 1 , a b 2 , a b 3 , . . . , a b φ ( m ) 都 与 m 互 质 , 且 每 个 数 均 不 相 同 ∴ { b 1 , b 2 , b 3 , . . . , b φ ( m ) } 中 , 每 一 个 数 一 定 与 { a b 1 , a b 2 , a b 3 , . . . , a b φ ( m ) } 中 的 一 个 数 同 余 , 且 一 一 对 应 。 ∴ a φ ( m ) ∏ i = 1 φ ( m ) b i ≡ ∏ i = 1 φ ( m ) a b i ≡ ∏ i = 1 φ ( m ) b i   ( m o d   m ) ∴ m ∣ a φ ( m ) ∏ i = 1 φ ( m ) b i − ∏ i = 1 φ ( m ) b i 即 m ∣ ( a φ ( m ) − 1 ) ∏ i = 1 φ ( m ) b i 又 ∵ ( m , ∏ i = 1 φ ( m ) b i ) = 1 ∴ m ∣ a φ ( m ) − 1 即 a φ ( m ) ≡ 1   ( m o d   m ) \begin{array}{ll} 设与m互质的数为b_1,b_2,b_3,...,b_{\varphi (m)}\\\\ \because (a,m)=1\\\\ \therefore ab_1,ab_2,ab_3,...,ab_{\varphi (m)} 都与m互质,且每个数均不相同\\\\ \therefore\{b_1,b_2,b_3,...,b_{\varphi (m)}\}中,每一个数一定与\{ab_1,ab_2,ab_3,...,ab_{\varphi (m)}\}中的一个数同余,且一一对应。\\\\ \therefore a^{\varphi (m)}\prod_{i=1}^{\varphi (m)}b_i \equiv \prod_{i=1}^{\varphi (m)}ab_i \equiv \prod_{i=1}^{\varphi (m)}b_i \ (mod\ m)\\\\ \therefore m \mid a^{\varphi (m)}\prod_{i=1}^{\varphi (m)}b_i-\prod_{i=1}^{\varphi (m)}b_i\\\\ 即m \mid (a^{\varphi (m)}-1)\prod_{i=1}^{\varphi (m)}b_i\\\\ 又\because (m,\prod_{i=1}^{\varphi (m)}b_i)=1\\\\ \therefore m \mid a^{\varphi (m)}-1\\\\ 即a^{\varphi (m)} \equiv 1\ (mod \ m) \end{array} mb1,b2,b3,...,bφ(m)(a,m)=1ab1,ab2,ab3,...,abφ(m)m{b1,b2,b3,...,bφ(m)}{ab1,ab2,ab3,...,abφ(m)}aφ(m)i=1φ(m)bii=1φ(m)abii=1φ(m)bi (mod m)maφ(m)i=1φ(m)bii=1φ(m)bim(aφ(m)1)i=1φ(m)bi(m,i=1φ(m)bi)=1maφ(m)1aφ(m)1 (mod m)

费马小定理

p p p为质数,则 a p − 1 ≡ 1   ( m o d   p ) a^{p-1} \equiv 1\ (mod\ p) ap11 (mod p)
因为 p p p为质数时, φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1

扩展欧拉定理

扩展到不要求互质

( a , m ) = 1 (a,m)=1 (a,m)=1时,
a c ≡ a c   m o d   φ ( m )   ( m o d   m ) a^c \equiv a^{c\ mod\ \varphi(m)}\ (mod\ m) acac mod φ(m) (mod m)
证明略

( a , m ) ̸ = 1 且 c &lt; φ ( m ) (a,m)\not= 1且c&lt;\varphi(m) (a,m)̸=1c<φ(m)时,
a c ≡ a c   ( m o d   m ) a^c\equiv a^c\ (mod\ m) acac (mod m)
无需证明

( a , m ) ̸ = 1 且 c ≥ φ ( m ) (a,m)\not= 1且c\geq \varphi(m) (a,m)̸=1cφ(m)时,
a c ≡ a c   m o d   φ ( m ) + φ ( m )   ( m o d   m ) a^c\equiv a^{c\ mod\ \varphi(m)+\varphi(m)}\ (mod\ m) acac mod φ(m)+φ(m) (mod m)

证明

取 a 的 质 因 子 p , 令 m = s × p r , 且 ( s , p ) = 1 p φ ( s ) ≡ 1   ( m o d   s ) ∵ s 不 含 因 子 p ∴ φ ( s ) ∣ φ ( m ) ∴ p φ ( m ) ≡ 1   ( m o d   s ) ⟹ p k φ ( m ) ≡ 1   ( m o d   s ) ⟹ p k φ ( m ) + r ≡ p r   ( m o d   s × p r ) ⟹ p k φ ( m ) + r + c ≡ p r + c   ( m o d   m ) ∵ k , c 为 任 意 非 负 整 数 ∴ 上 式 可 表 述 为 : 若 整 数 c ≥ r , 则 p c ≡ p k φ ( m ) + c   ( m o d   m ) 设 a 中 含 有 p 因 子 p k , c ≥ φ ( m ) ≥ r ( p k ) c ≡ p k c ≡ p k φ ( m ) + k c ≡ ( p k ) φ ( m ) + c ≡ ( p k ) t φ ( m ) + c   ( m o d   m )   ( t 为 任 意 正 整 数 ) ⟹ ( p k ) c ≡ ( p k ) c   m o d   φ ( m ) + φ ( m )    ( 加 φ ( m ) 为 了 保 证 最 后 的 指 数 ≥ φ ( m ) ) a 的 每 个 质 因 子 都 满 足 上 式 同 余 式 可 相 乘 , 乘 起 来 即 为 a c ≡ a c   m o d   φ ( m ) + φ ( m )   ( m o d   m ) \begin{array}{ll} 取a的质因子p,令m=s\times p^r,且(s,p)=1\\\\ p^{\varphi(s)}\equiv 1\ (mod\ s)\\\\ \because s不含因子p\\\\ \therefore \varphi(s)\mid \varphi(m)\\\\ \therefore p^{\varphi(m)}\equiv 1\ (mod\ s)\\\\ \Longrightarrow p^{k \varphi(m)}\equiv 1\ (mod\ s)\\\\ \Longrightarrow p^{k \varphi(m)+r}\equiv p^r\ (mod\ s\times p^r)\\\\ \Longrightarrow p^{k\varphi(m)+r+c}\equiv p^{r+c}\ (mod\ m)\\\\ \because k,c为任意非负整数\\\\ \therefore 上式可表述为:若整数c\geq r ,则p^c\equiv p^{k\varphi(m)+c}\ (mod\ m)\\\\ 设a中含有p因子p^k,c\geq \varphi(m)\geq r\\\\ {(p^k)}^c\equiv p^{kc}\equiv p^{k\varphi(m)+kc}\equiv {(p^k)}^{\varphi(m)+c}\equiv (p^k)^{t\varphi(m)+c}\ (mod\ m)\ (t为任意正整数)\\\\ \Longrightarrow {(p^k)}^c\equiv {(p^k)}^{c\ mod\ \varphi(m)+\varphi(m)}\ \ (加\varphi(m)为了保证最后的指数\geq \varphi(m) )\\\\ a的每个质因子都满足上式\\\\ 同余式可相乘,乘起来即为a^c\equiv a^{c\ mod\ \varphi(m)+\varphi(m)}\ (mod\ m) \end{array} apm=s×pr(s,p)=1pφ(s)1 (mod s)spφ(s)φ(m)pφ(m)1 (mod s)pkφ(m)1 (mod s)pkφ(m)+rpr (mod s×pr)pkφ(m)+r+cpr+c (mod m)k,ccr,pcpkφ(m)+c (mod m)appkcφ(m)r(pk)cpkcpkφ(m)+kc(pk)φ(m)+c(pk)tφ(m)+c (mod m) (t)(pk)c(pk)c mod φ(m)+φ(m)  (φ(m)φ(m))aacac mod φ(m)+φ(m) (mod m)

用途

再也不用担心指数爆炸了!!指数也可以取模了

题目

BZOJ3884(推公式)
BZOJ4869(+线段树)

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值