[整理]扩展欧拉定理证明

证明思路来源于知乎https://zhuanlan.zhihu.com/p/24902174


需要证明 axaxmodφ(m)+φ(m)(modm) a x ≡ a x mod φ ( m ) + φ ( m ) ( mod m ) ,其中 a a 为任意整数,m,x为正整数,且 xφ(m) x ≥ φ ( m )


引理1:

{xy (modm1)xy (modm2)xy(modlcm(m1,m2)) { x ≡ y   ( mod m 1 ) x ≡ y   ( mod m 2 ) ⟹ x ≡ y ( mod l c m ( m 1 , m 2 ) )

理解:

{xy (modm1)xy (modm2){m1|xym2|xy { x ≡ y   ( mod m 1 ) x ≡ y   ( mod m 2 ) ⟹ { m 1 | x − y m 2 | x − y
m1,m2 m 1 , m 2 标准分解: m1=Ap1qa1p2qa2pnqan      m 1 = A ∗ p 1 q a 1 p 2 q a 2 ⋯ p n q a n           m2=Bp1qb1p2qb2pnqbn m 2 = B ∗ p 1 q b 1 p 2 q b 2 ⋯ p n q b n

因为 xy x − y 又是 m1 m 1 的倍数,又是 m2 m 2 的倍数,所以 xy=CABp1max(qa1,qb1)p2max(qa2,qb2)pnmax(qan,qbn) x − y = C ∗ A ∗ B ∗ p 1 m a x ( q a 1 , q b 1 ) p 2 m a x ( q a 2 , q b 2 ) ⋯ p n m a x ( q a n , q b n )

显然有 lcm(m1,m2)|xyxy(modlcm(m1,m2)) l c m ( m 1 , m 2 ) | x − y ⟹ x ≡ y ( mod l c m ( m 1 , m 2 ) )


引理2:

p p 是素数,q 是正整数且 q>1 q > 1 ,则 φ(pq)q φ ( p q ) ≥ q

理解:

φ(pq)q(p1)pq1q φ ( p q ) ≥ q ⟹ ( p − 1 ) ∗ p q − 1 ≥ q

p,q p , q 均为2时,显然有 (p1)pq1q ( p − 1 ) ∗ p q − 1 ≥ q
q q 大于2时,q 每增加 1 1 ,不等式左边翻倍,右边增加一,显然成立
p 大于2时, (p1)pq1>(21)2q1q ( p − 1 ) ∗ p q − 1 > ( 2 − 1 ) ∗ 2 q − 1 ≥ q


证明

m m 为任意正整数时,将m标准分解: m=pq11pq22pqnn m = p 1 q 1 p 2 q 2 ⋯ p n q n

引理2 , 对于其中的一个 pqii p i q i ,都有 axaxmodφ(pqii)+φ(pqii)0(modpqii) a x ≡ a x mod φ ( p i q i ) + φ ( p i q i ) ≡ 0 ( mod p i q i )

由于 φ(m) φ ( m ) φ(pqii) φ ( p i q i ) 的倍数
gcd(a,pi)=1 gcd ( a , p i ) = 1 时,明显有 axmodφ(pqii)+φ(pqii)axmodφ(m)+φ(m)(modpqii) a x mod φ ( p i q i ) + φ ( p i q i ) ≡ a x mod φ ( m ) + φ ( m ) ( mod p i q i )
gcd(a,pi)=pi gcd ( a , p i ) = p i 时,明显有 axmodφ(pqii)+φ(pqii)0axmodφ(m)+φ(m)(modpqii) a x mod φ ( p i q i ) + φ ( p i q i ) ≡ 0 ≡ a x mod φ ( m ) + φ ( m ) ( mod p i q i )

即: axaxmodφ(pqii)+φ(pqii)axmodφ(m)+φ(m)(modpqii) a x ≡ a x mod φ ( p i q i ) + φ ( p i q i ) ≡ a x mod φ ( m ) + φ ( m ) ( mod p i q i )

引理1 ,将所有 axaxmodφ(m)+φ(m)(modpqii) a x ≡ a x mod φ ( m ) + φ ( m ) ( mod p i q i ) 合并,命题即可得证

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值