计算机视觉算法 面试必备知识点(2022)

去年面试字节的时候,准备了一些算法常用的面试知识点,事实证明,准备的还不错。现在分享给大家,希望自己求职路也顺利些。

目录

优化算法,Adam, Momentum, Adagard,SGD原理:

正则化:

Logit函数和sigmoid函数的关系:

损失函数:

交叉熵损失函数:

神经网络为啥使用交叉熵?

激活函数的作用:

逻辑回归和线性回归:

分类算法及其应用场景:

Batch Normalization:批标准化

欠拟合、过拟合的解决方法:

如何解决梯度消失和梯度爆炸问题

如何解决正负样本不平衡问题:

线性回归和逻辑回归:

训练网络不收敛的原因:

使用较小卷积核的好处:


高频问题:

优化算法,Adam, Momentum, Adagard,SGD原理

自适应学习率算法
Adagard在训练的过程中可以自动变更学习的速率,设置一个全局的学习率,而实际的学习率与梯度历史平方值总和的平方根成反比。用adagrad将之前梯度的平方求和再开根号作为分母,会使得一开始学习率呈放大趋势,随着训练的进行学习率会逐渐减小
Momentum参考了物理中动量的概念,前几次的梯度也会参与到当前的计算中,但是前几轮的梯度叠加在当前计算中会有一定的衰减。用来解决梯度下降不稳定,容易陷入鞍点的缺点
SGD为随机梯度下降,每一次迭代计算数据集的mini-batch的梯度,然后对参数进行跟新。优点是更新速度快,缺点是训练不稳定,准确度下降。
Adam利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率,在经过偏置的校正后,每一次迭代后的学习率都有个确定的范围,使得参数较为平稳,结合momentum和adagrad两种算法的优势

正则化:

用来显示地设计来减少测试误差,修改学习算法,降低泛化误差而非训练误差.通过对目标函数添加一个参数范数惩罚,限制模型的学习能力。
L1正则化 各个参数的绝对值之和, 可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择;一定程度上可以防止过拟合。
稀疏矩阵指的是很多元素为0、只有少数元素是非零值的矩阵。以线性回归为例,即得到的线性回归模型的大部分系数都是0,这表示只有少数特征对这个模型有贡献,从而实现了特征选择。总而言之,稀疏模型有助于进行特征选择。
L2正则化可以防止模型过拟合  L2是各个参数平方和的开方值
L1不可导的时候该怎么办?      Q: 当损失函数不可导,梯度下降不再有效,可以使用坐标轴下降法,梯度下降是沿着当前点的负梯度方向进行参数更新,而坐标轴下降法是沿着坐标轴的方向,假设有m个特征个数,坐标轴下降法进参数更新的时候,先固定m-1个值,然后再求另外一个的局部最优解,从而避免损失函数不可导问题

Logit函数和sigmoid函数的关系:

logistic function 是 logit funciton的反函数
sigmoid function不是某一个函数,而是指某一类形如"S"的函数,都可以成为sigmoid的函数.
区别logit\logistic\simoid函数: 一篇文章搞懂logit, logistic和sigmoid的区别 - 知乎 关于机器学习中logit的含义,对于理解模型很有帮助
sigmoid的优点在于输出范围有限,所以数据在传递的过程中不容易发散。当然也有相应的缺点,就是饱和的时候梯度太小。
sigmoid还有一个优点是输出范围为(0, 1),所以可以用作输出层,输出表示概率;处处可导,

损失函数:

交叉熵损失 Cross Entropy :多分类问题常用的损失函数 
交叉熵主要是用来判定实际的输出与期望的输出的接近程度
交叉熵公式:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值