完整版万字论文思路和Python代码下载:https://www.jdmm.cc/file/2712072/
问题2:QFN封装参数估计
题目描述:
QFN (Quad Flat No-leads) 封装可以分为三层:
-
第一层:仅有环氧树脂。
-
第二层:包含环氧树脂和芯片。
-
第三层:包含环氧树脂和铜焊盘。
需要建立数学模型,估计QFN封装在角点位置沿对角线方向的等效杨氏模量 (E_{eq}) 和等效热膨胀系数 (\text{CTE}_{eq})。
已知参数: [cite: 1]
-
环氧树脂(overmold):杨氏模量 E_1,热膨胀系数 \text{CTE}_1
-
芯片:杨氏模量 E_2,热膨胀系数 \text{CTE}_2
-
铜:杨氏模量 E_3,热膨胀系数 \text{CTE}_3
-
芯片长宽 L_1,芯片结半对角长度 L_{D1}
-
环氧树脂(overmold)长宽 L_2,半对角长度 L_{D2}
-
铜焊盘的长宽 L_3,半对角长度 L_{D3}
-
第三层焊料长度 \text{LEN}_1,高度 H_1 (焊料材料参数用铜简化)
-
环氧树脂(overmold)厚度 H_2,芯片厚度 H_3
-
铜焊盘厚度 H_4,QFN封装厚度 H_5
-
PCB板:热膨胀系数 \text{CTE}_4,杨氏模量 E_4 (此参数可能用于整体封装与PCB的相互作用分析,对于仅估计QFN封装本身参数可能不是直接输入)
建模思路:
QFN封装在角点沿对角线方向的等效参数估计,可以采用复合材料力学的理论。由于结构是层状的,并且每层内部也可能是混合材料,我们可以分层计算等效参数,然后将各层视为串联或并联(取决于受力方向和变形协调)来计算整体的等效参数。考虑到是沿对角线方向,我们需要分析该方向上各材料的贡献。
1. 定义坐标系和分析方向: 以QFN封装的中心为原点,对角线方向为主要分析方向。
2. 各层等效参数计算:
我们需要计算每一层在对角线方向上的等效杨氏模量和等效热膨胀系数。由于题目描述的是“角点位置沿对角线方向”,这暗示我们可能需要考虑材料在该方向上的投影面积或体积百分比。
-
第一层 (仅环氧树脂):
-
等效杨氏模量: E_{L1} = E_1
-
等效热膨胀系数: \text{CTE}_{L1} = \text{CTE}_1
-
厚度: t_1 (需要从 H_2, H_3, H_4, H_5 和层结构图中推断,假设为 H_5 - H_3 - H_4 中纯环氧树脂的部分,或者根据图示,第一层是封装顶部纯树脂层,其厚度可能为 H_2 的一部分,或 H_5 减去下方包含芯片和焊盘的厚度)。假设其厚度为 t_1。
-
-
第二层 (环氧树脂 + 芯片): 这一层是复合材料。在对角线方向上,芯片和环氧树脂并存。我们可以使用混合律(Rule of Mixtures)或更复杂的模型(如Halpin-Tsai)来估计其等效参数。为简化,先考虑体积平均法或面积平均法。 假设在对角线方向的截面上,芯片的面积分数为 A_{f2,chip},环氧树脂的面积分数为 A_{f2,resin}。 A_{f2,chip} + A_{f2,resin} = 1。这些面积分数需要根据 L_1, L_2 和封装几何在对角线方向的投影来估算。
-
等效杨氏模量 (Voigt 模型 - 并联,适用于受力方向): E_{L2} = E_1 A_{f2,resin} + E_2 A_{f2,chip} (Reuss 模型 - 串联,适用于垂直受力方向,可作为下限参考: 1/E_{L2} = A_{f2,resin}/E_1 + A_{f2,chip}/E_2) 对于沿对角线拉伸,Voigt模型可能更接近。
-
等效热膨胀系数 (考虑应力协调的混合律): \text{CTE}_{L2} = \frac{\text{CTE}_1 E_1 A_{f2,resin} + \text{CTE}_2 E_2 A_{f2,chip}}{E_1 A_{f2,resin} + E_2 A_{f2,chip}} 或者简单的体积平均: \text{CTE}_{L2} = \text{CTE}_1 V_{f2,resin} + \text{CTE}_2 V_{f2,chip} 其中 V_f 是体积分数。对于薄层,面积分数可以近似体积分数。
-
厚度: t_2 = H_3 (芯片厚度)
-
-
第三层 (环氧树脂 + 铜焊盘): 类似于第二层,铜焊盘和环氧树脂并存。 假设在对角线方向的截面上,铜的面积分数为 A_{f3,copper},环氧树脂的面积分数为 A_{f3,resin}。 A_{f3,copper} + A_{f3,resin} = 1。这些面积分数需要根据 L_3, L_2 和封装几何在对角线方向的投影来估算。
-
等效杨氏模量 (Voigt 模型): E_{L3} = E_1 A_{f3,resin} + E_3 A_{f3,copper}
-
等效热膨胀系数: \text{CTE}_{L3} = \frac{\text{CTE}_1 E_1 A_{f3,resin} + \text{CTE}_3 E_3 A_{f3,copper}}{E_1 A_{f3,resin} + E_3 A_{f3,copper}}
-
厚度: t_3 = H_4 (铜焊盘厚度,题目中还提到第三层焊料长度 \text{LEN}_1,高度 H_1,若此焊料是构成第三层的主要部分,则厚度用 H_1, 材料用铜简化。此处根据图示 Layer 3 的描述,是环氧树脂和铜焊盘,其厚度应为 H_4)
-
3. 整体QFN封装等效参数计算:
QFN封装可以看作是这三层(或根据实际层划分)在厚度方向上堆叠而成。当沿对角线方向受力或发生热膨胀时,各层协同变形。 如果将各层视为沿对角线方向“并联”受力(假设各层沿对角线方向的应变相同),则等效杨氏模量可以通过加权平均计算,权重为各层在总对角线截面上的面积占比。 然而,更常见的是将层状结构在面内拉伸时,视为各向同性层通过层合板理论处理,或简化为等效梁/板模型。
对于沿对角线方向的拉伸/压缩来求等效杨氏模量: 假设总的有效截面积为 A_{total} (沿对角线方向的厚度乘以有效宽度)。 可以认为这三层是并联承受对角线方向的拉力。此时需要考虑各层沿对角线方向的有效“宽度”或“截面积贡献”。 设沿对角线方向的长度为 L_{diag} (例如 L_{D2} \times 2)。 我们更关心的是通过厚度方向的积分。 总厚度 H_5 = t_1 + t_2 + t_3 (假设这样划分)。
对于等效杨氏模量 E_{eq},如果假设在对角线方向上各层应变相同 (iso-strain condition): E_{eq} = \frac{E_{L1} A_{L1} + E_{L2} A_{L2} + E_{L3} A_{L3}}{A_{L1} + A_{L2} + A_{L3}} 其中 A_{Li} 是第 i 层在垂直于对角线方向并平行于封装平面的有效截面积。这个简化可能过于粗略。
一个更常用的方法是考虑层合板理论的简化,或者使用能量法。 对于面内等效杨氏模量,可以考虑各层贡献的加权平均,权重为各层的厚度占比: E_{eq} = \frac{E_{L1}t_1 + E_{L2}t_2 + E_{L3}t_3}{t_1+t_2+t_3} 这更像是将各层视为并联弹簧,计算等效刚度后再换算为模量。
对于等效热膨胀系数 \text{CTE}_{eq}: 当温度变化 \Delta T 时,自由状态下,总的对角线方向的伸长量 \Delta L_{total}。 \Delta L_{total} = \text{CTE}_{eq} \cdot L_{diag_0} \cdot \Delta T 同时,每一层的伸长量为 \Delta L_i = \text{CTE}_{Li} \cdot L_{diag_0} \cdot \Delta T (假设初始对角线长度相同)。 由于各层被约束在一起,它们会产生内应力。 一个常用的层合物等效面内CTE公式 (适用于各向同性层): \text{CTE}_{eq} = \frac{\sum (\text{CTE}_{Li} E_{Li} t_i / (1-\nu_i))}{\sum (E_{Li} t_i / (1-\nu_i))} 其中 \nu_i 是第 i 层的泊松比。如果泊松比未知或影响不大,可简化为: \text{CTE}_{eq} = \frac{\sum \text{CTE}_{Li} E_{Li} t_i}{\sum E_{Li} t_i} 这个公式是基于各层之间无滑移,共同变形的假设。
4. 计算角点对角线方向的几何参数:
-
需要根据 L_1, L_2, L_3 和 L_{D1}, L_{D2}, L_{D3} 确定在对角线方向上,各材料(环氧树脂、芯片、铜)所占的比例。
-
例如,在第二层,对角线穿过芯片和环氧树脂。需要确定其相对的横截面积比例。如果芯片是中心矩形,其在对角线上的投影长度为 2 L_{D1}。封装的对角线长度为 2 L_{D2}。
-
面积分数 A_{fi,component} 的计算:这取决于对角线“角点位置”的具体定义。如果是指封装外廓的角点,那么沿对角线方向看过去,各层材料的分布会比较复杂。
-
简化假设:可以考虑在封装中心取一个代表性的对角线,然后分析该线段上不同材料的长度比例,并假设其在厚度方向上是均匀的,从而得到面积分数。
-
例如,对于第二层,其总对角线长度为 2 L_{D2} (假设芯片在此层内)。芯片部分的对角线长度为 2 L_{D1}。则芯片的“线性”占比约为 L_{D1}/L_{D2}。如果假设宽度一致,则面积占比也近似为此。
-
A_{f2,chip} \approx (L_{D1}/L_{D2})^2 如果是面积比,或者更简单地用长度比 (L_{D1}/L_{D2}) 作为权重,具体取决于模型假设。
-
A_{f2,resin} \approx 1 - A_{f2,chip}
-
类似地计算第三层中铜的面积分数 A_{f3,copper} (基于 L_{D3} 和 L_{D2})。
-
进一步考虑和改进:
-
几何参数的精确定义:角点位置、对角线方向的面积分数计算是关键,需要更精确的几何分析。可能需要根据封装的实际 CAD 图纸进行更细致的区域划分。
-
混合律的选择:对于层内的复合材料,Voigt(等应变)和Reuss(等应力)模型分别给出等效模量的上下限。更精确的模型如Halpin-Tsai方程可以考虑颗粒的形状和分布。
-
层间相互作用:上述模型假设层间完美结合。
-
有限元分析 (FEA):对于复杂的几何形状和精确的应力应变分布,FEA是更可靠的方法。
-
在FEA中,可以建立QFN的三维模型,赋予各部分材料属性。
-
计算 E_{eq}:在对角线方向施加均匀拉伸位移,计算总反力,从而得到等效刚度,再换算为杨氏模量 (E = \sigma/\epsilon = (F/A) / (\Delta L / L_0))。
-
计算 \text{CTE}_{eq}:对模型施加均匀温升 \Delta T,测量在无约束条件下对角线方向的自由膨胀量 \Delta L_{diag},则 \text{CTE}_{eq} = (\Delta L_{diag} / L_{diag0}) / \Delta T。
-
-
泊松比的影响:在精确计算CTE时,泊松比会有影响。如果未知,可能需要查阅文献或使用典型值。
关于代码思路的说明: 上述Python伪代码提供了一个基于简化混合律和层合板理论的分析计算框架。关键在于如何根据题目给出的几何参数(L_1, L_{D1}等)合理地计算出各层内不同材料在所分析的“对角线方向”上的有效面积或体积分数 (A_{fi} 或 V_{fi})。对于“角点位置沿对角线方向”,其精确的几何解释会直接影响这些分数的计算。如果题目允许更详细的建模,可以考虑将角点附近区域划分为微单元进行分析。
如果需要进行仿真计算,则代码思路会转向使用特定的FEA软件(如ANSYS, Abaqus)的脚本语言(如APDL, Python scripting for Abaqus)来建模、加载、求解和后处理。
问题3:实际BGA封装参数估计(含缺陷) [cite: 2]
题目描述: [cite: 2] 实际BGA封装的焊球分布存在图3.2所示的缺陷。需要利用数学模型并结合仿真计算,估计实际BGA封装在角点位置沿对角线方向的等效杨氏模量和热膨胀系数。
已知参数: [cite: 2]
-
PCB板:厚度1.6mm,长宽140mm,CTE 17.0 ppm/C,E 28.6 GPa。
-
BGA:长宽26mm。
-
覆膜(overmold):厚度1.17mm,E 11.7 GPa,CTE 23.0 ppm/C。
-
基板(laminate):厚度0.8mm,E 73.3 GPa,CTE 21.0 ppm/C。
-
-
芯片结:位于BGA封装正中心,长宽4.5mm,高0.2mm,E 130 GPa,CTE 2.6 ppm/C。
-
芯片上封装:长宽4.5mm,高0.97mm,E 11.7 GPa,CTE 23.0 ppm/C。(这部分描述似乎是芯片上方的填充材料,与覆膜性质相似)
-
焊球:数量437个,几何尺寸如图3.3 (Diameter=700μm, Total_h=500μm, low_pad_D=500μm, low_pad_h=030μm, high_pad_D=500μm, high_pad_h=020μm)。焊球材料通常为SAC合金 (如SAC305, SAC405),其杨氏模量和CTE需要查表,若未提供,可暂用典型值 (例如 E ≈ 50-60 GPa, CTE ≈ 20-22 ppm/C at room temp,但会随温度变化)。
建模思路:
由于存在复杂的几何形状(BGA结构、焊球形状)和不规则的焊球缺陷分布,此问题明确要求“结合仿真计算”,因此有限元分析 (FEA) 是主要的建模手段。
1. 几何建模 (FEA):
-
完整模型或子模型: 可以考虑建立包含PCB、BGA(基板、覆膜、芯片结、芯片上封装)和所有437个焊球的完整三维模型。如果计算资源有限,且关注的是角点位置的等效性能,可以采用子模型技术 (submodeling) 对角点区域进行细化分析,但获取边界条件需要先进行粗略的整体分析。考虑到缺陷的影响是全局性的,建议尽可能建立完整模型。
-
BGA结构: 根据图3.1和参数精确建模各组成部分。
-
PCB板。
-
BGA基板。
-
芯片结(Die)。
-
芯片上封装/覆膜 (Overmold/Mold Compound)。
-
-
焊球建模:
-
根据图3.3的尺寸精确建模每个焊球的形状(包含上下焊盘部分)。
-
缺陷引入: 根据图3.2的焊球分布图,在模型中准确地布置焊球,并在指定位置“移除”焊球或不创建焊球,以模拟缺陷。这是此问题的关键点。
-
-
对角线定义: 明确BGA封装角点位置和沿对角线方向。
2. 材料属性分配 (FEA):
-
为模型的每个部件(PCB, BGA基板, 覆膜, 芯片结, 焊球)赋予题目给定的或查阅得到的杨氏模量 (E)、泊松比 (\nu) 和热膨胀系数 (\text{CTE})。泊松比如果未给出,需要查阅典型值 (例如,金属约0.3,环氧树脂约0.35-0.4)。
3. 网格划分 (FEA):
-
对整个模型进行高质量的网格划分。
-
在应力集中的区域(如焊球与基板/PCB的连接处、缺陷焊球附近、BGA角点)需要进行网格细化,以保证计算精度。
-
焊球的复杂几何形状需要合适的网格类型和密度。
4. 边界条件和加载 (FEA):
-
计算等效杨氏模量 (E_{eq}) 沿对角线方向:
-
方法1 (施加位移):
-
固定模型一端(例如,BGA封装的一个角点或一条边在对角线方向的位移为0)。
-
在对角线方向的另一端施加一个已知的微小位移 (\Delta L_{diag})。
-
计算模型在该方向产生的总反力 (F_{diag})。
-
计算该方向的应变 \varepsilon_{diag} = \Delta L_{diag} / L_{0,diag} (其中 L_{0,diag} 是BGA封装沿对角线的原始长度)。
-
计算该方向的应力 \sigma_{diag} = F_{diag} / A_{eff} (其中 A_{eff} 是BGA封装在垂直于对角线方向的有效横截面积,通常是 BGA厚度 \times BGA宽度,具体取值需视情况而定,或者直接使用等效刚度概念)。
-
E_{eq} = \sigma_{diag} / \varepsilon_{diag}。 更直接地,计算等效轴向刚度 K_{eq} = F_{diag} / \Delta L_{diag},然后 E_{eq} = K_{eq} \cdot L_{0,diag} / A_{eff}。这里的 A_{eff} 的定义对于复杂结构可能不唯一,通常是指封装的整体截面。
-
-
方法2 (施加力):
-
固定模型一端。
-
在对角线方向的另一端施加一个已知的力 (F_{diag})。
-
计算该方向产生的总位移 (\Delta L_{diag})。
-
后续计算同方法1。
-
-
-
计算等效热膨胀系数 (\text{CTE}_{eq}) 沿对角线方向:
-
无机械约束: 确保模型可以自由膨胀。可以对模型施加非常软的弹簧约束以防止刚体位移,或者仅约束一个点使其不能平动,一个线使其不能转动。
-
施加均布温升: 对整个模型(或至少是BGA封装部分)施加一个均匀的温度变化 \Delta T (例如, 从参考温度 T_0 升到 T_0 + \Delta T)。
-
测量变形: 测量BGA封装在角点位置沿对角线方向的自由热膨胀量 \Delta L_{diag,thermal}。
-
计算 \text{CTE}_{eq}: \text{CTE}_{eq} = \frac{\Delta L_{diag,thermal}}{L_{0,diag} \cdot \Delta T}
-
5. 求解和后处理 (FEA):
-
运行FEA求解器进行结构分析(用于E_{eq})和热固耦合分析或纯热膨胀分析(用于\text{CTE}_{eq})。
-
从仿真结果中提取所需的力、位移、应力、应变数据。
-
特别关注角点区域和缺陷焊球周围的应力分布,虽然题目主要求等效参数,但这些分布有助于理解缺陷的影响。
代码思路 (FEA软件脚本 - 例如ANSYS APDL或Abaqus Python):
FEA的“代码”指的是用于控制FEA软件进行建模、分析和后处理的脚本。
关键点与挑战:
-
缺陷的精确建模: 如何在FEA模型中准确反映图3.2的焊球缺陷分布是核心。
-
焊球的复杂几何: 图3.3的焊球不是简单的球形,精确建模需要花费一些功夫。
-
计算资源: 包含大量焊球(即使有缺陷减少了一些)的完整三维模型可能计算量较大。
-
接触定义: 各部件之间的接触(如焊球与BGA基板、焊球与PCB)需要正确定义(通常是绑定接触)。
-
有效截面积 A_{eff} 的定义: 对于复杂结构,这个参数的选取可能影响基于应力/应变计算的 E_{eq},使用等效刚度 K_{eq} 可能更直接。
-
结果的代表性: 角点位置的等效参数可能受网格密度和边界条件施加方式的影响。
总结: 对于问题3,主要工作在于熟练运用一款FEA软件,通过其脚本功能实现参数化建模、缺陷引入、加载求解和结果提取。数学模型体现在FEA的基本控制方程(弹性力学、热弹性力学)以及等效参数的定义和计算方法上。