堆的性质
- 堆中某个节点的值总是不大于或不小于其父亲节点的值;
- 堆总是一颗完全二叉树。
堆的实现
头文件
#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int HPDataType;
typedef struct Heap
{
HPDataType* _a;
int _size;
int _capacity;
}Heap;
// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);
// 堆的打印
void HeapPrintf(Heap* hp);
// 对数组进行堆排序
void HeapSort(int* a, int n);
// TopK问题:找出N个数里面最大/最小的前K个问题。
// 比如:未央区排名前10的泡馍,西安交通大学王者荣耀排名前10的韩信,全国排名前10的李白。等等问题都是Topk问题,
// 需要注意:
// 找最大的前K个,建立K个数的小堆
// 找最小的前K个,建立K个数的大堆
void PrintTopK(int* a, int n, int k);
函数实现
#include"Heap.h"
void Swap(HPDataType* left, HPDataType *right)
{
HPDataType tmp = *left;
*left = *right;
*right = tmp;
}
void AdjustDown(HPDataType* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1;
while (child<n)
{
if (child+1< n && a[child+1]<a[child])
{
++child;
}
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void AdjustUp(HPDataType* a, int child)
{
int parent = (child - 1) / 2;
while (child>0)
{
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n)
{
assert(hp && a);
hp->_a = (HPDataType*)malloc(sizeof(HPDataType)*n);
hp->_size = hp->_capacity = n;
memcpy(hp->_a, a, sizeof(HPDataType)*n);
for (int i = (n - 2) / 2; i > 0; --i)
{
AdjustDown(a, n, i);
}
HeapPrintf(hp);
}
// 堆的销毁
void HeapDestory(Heap* hp)
{
assert(hp);
free(hp->_a);
hp->_a = NULL;
hp->_capacity = 0;
hp->_size = 0;
}
// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{
assert(hp);
//空间不够增容
if (hp->_size == hp->_capacity)
{
size_t newcapacity = hp->_capacity * 2;
hp->_a = (HPDataType*)realloc(hp->_a,sizeof(HPDataType)*newcapacity);
hp->_capacity = newcapacity;
}
hp->_a[hp->_size] = x;
hp->_size++;
//向上调整
AdjustUp(hp->_a, hp->_size - 1);
}
// 堆的删除
void HeapPop(Heap* hp)
{
Swap(&hp->_a[0], &hp->_a[hp->_size - 1]);
hp->_size--;
AdjustDown(hp->_a, hp->_size, 0);
}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
return hp->_a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
assert(hp);
return hp->_size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{
assert(hp);
return hp->_size == 0 ? 1 : 0;
}
void HeapPrintf(Heap* hp)
{
for (int i = 0; i < hp->_size; ++i)
{
printf("%d ", hp->_a[i]);
}
printf("\n");
}
// 对数组进行堆排序
void HeapSort(int* a, int n)
{
// 排升序需要建大堆:
// 因为每次都会把堆顶元素拿出来放到当前堆的最后一个位置
// 相当于每次都会把剩余元素中的最大值(即堆顶元素)找出来
// 放到它该有的位置(当前堆的最后一个位置)
// 建堆
for (int i = (n - 2) / 2; i >= 0; --i)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end>0)
{
Swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
--end;
}
}
// TopK问题:
// 找最大的前K个,建立K个数的小堆
// 找最小的前K个,建立K个数的大堆
//1.建立小堆,找最大的前K个
//思路:建立一个K大小的小堆,堆顶是最小的元素,接下来的数a[k]比堆顶大
//那就说明这个数要替代了堆顶的数了,当他替换堆顶元素之后进行一次向下调整,
//这时候堆里最小的元素又跑到堆顶了,只要比他大那就把它替换掉,
//当整个数组遍历完毕之后,堆里的元素就是最大的k个元素了。
void PrintTopK(int* a, int n, int k)
{
int num = n;
for (int i = (k - 2) / 2; i > 0; --i)
{
AdjustDown(a, k, i);
}
for (int i = k; i < num; ++i)
{
if (a[0]<a[i])
{
Swap(&a[0], &a[i]);
}
AdjustDown(a, k, 0);
}
for (int i = 0; i < k; ++i)
{
printf("%d ", a[i]);
}
}
//2.建大堆,找最小的前K个
void AdjustDownBig(HPDataType* a, int n, int root)
{
int parent = root;
int child = parent * 2 + 1;
while (child<n)
{
if (child + 1< n && a[child + 1]>a[child])
{
++child;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void PrintTopKSmall(int* a, int n, int k)
{
int num = n;
for (int i = (k - 2) / 2; i > 0; --i)
{
AdjustDownBig(a, n, i);
}
for (int i = k; i < num; ++i)
{
if (a[0]>a[i])
{
Swap(&a[0], &a[i]);
}
AdjustDownBig(a, k, 0);
}
for (int i = 0; i < k; ++i)
{
printf("%d ", a[i]);
}
}
调用函数
#include"Heap.h"
int main()
{
int arr[10] = { 23, 56, 78, 9, 3, 4, 66, 88, 34, 25 };
/*HeapCreate(&hp, arr, 10);
HeapSort(arr, 10);*/
PrintTopK(arr,10,3);
PrintTopKSmall(arr,10,3);
system("pause");
return 0;
}