命运
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 21696 Accepted Submission(s): 7518
Problem Description
穿过幽谷意味着离大魔王lemon已经无限接近了!
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个机关。要知道,不论何人,若在迷宫中被困1小时以上,则必死无疑!
可怜的yifenfei为了去救MM,义无返顾地跳进了迷宫。让我们一起帮帮执着的他吧!
命运大迷宫可以看成是一个两维的方格阵列,如下图所示:
yifenfei一开始在左上角,目的当然是到达右下角的大魔王所在地。迷宫的每一个格子都受到幸运女神眷恋或者痛苦魔王的诅咒,所以每个格子都对应一个值,走到那里便自动得到了对应的值。
现在规定yifenfei只能向右或者向下走,向下一次只能走一格。但是如果向右走,则每次可以走一格或者走到该行的列数是当前所在列数倍数的格子,即:如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) 其中k>1。
为了能够最大把握的消灭魔王lemon,yifenfei希望能够在这个命运大迷宫中得到最大的幸运值。
Input
输入数据首先是一个整数C,表示测试数据的组数。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
每组测试数据的第一行是两个整数n,m,分别表示行数和列数(1<=n<=20,10<=m<=1000);
接着是n行数据,每行包含m个整数,表示n行m列的格子对应的幸运值K ( |k|<100 )。
Output
请对应每组测试数据输出一个整数,表示yifenfei可以得到的最大幸运值。
Sample Input
13 89 10 10 10 10 -10 10 1010 -11 -1 0 2 11 10 -20-11 -11 10 11 2 10 -10 -10
Sample Output
52
Author
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int map[25][1066];
int dp[25][1066];
//二维的最大连续子序列 左上角跑去右下角
int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
int n,m,i,j,k,temp,ans=0;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)//i为y坐标,j为横坐标,坐标原点在左上角
for(j=1;j<=m;j++)
scanf("%d",&map[i][j]);//读入数据从1,1开始,为了下面求j的约数准确
for(i = 0; i<=n; i++) //动态规划题目中dp数组的初始化一直是难点和重点,因为没有模板,每一道都需要根据题目实际情况来对待
dp[i][0] = -99999999;
for(i = 0; i<=m; i++)
dp[0][i] = -99999999;
dp[1][1]=map[1][1];
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(i!=1&&j!=1) //不是起点,也不是左下角和右上角这两个特殊点
{
temp=max(dp[i-1][j],dp[i][j-1]);
//除了上和左,也可以是j的约数k,只要是j%k==0
for(k=j-2;k>0;k--)
{
if(j%k==0)
temp=max(dp[i][k],temp);
}
dp[i][j]=temp+map[i][j];
}
else if(i==1&&j!=1) //因为判断下一步到达这,而不是这一步要出发,所以这里只能往右走的约束条件是i==0,而不是i!=n-1 可以体会一下
//只能往右走
{
temp=dp[i][j-1];
for(k=j-2;k>0;k--)
{
if(j%k==0)
temp=max(dp[i][k],temp);
}
dp[i][j]=temp+map[i][j];
}
else if(i!=1&&j==1)
dp[i][j]=dp[i-1][j]+map[i][j];//只能往下走
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}