药方拆解
皮炎湿疹荨麻疹相关药方
详细内容见 第二回 第三次,这里只保留文章的标题目录,因为文章中有太多 Latex 公式,所以编辑起来太卡了,只能分几次更新。)
全虫方 · 赵炳南
全虫方在 第二回 第二次 已经写给出,但是后面还要以它为例,给出上次提及的的方法二,所以为了阅读方便,这里重新再列出来一遍。
方中刺蒺藜 15-30g,取平均值22.5g;炒槐花 15-30g,取平均值 22.5g;威灵仙 12-30g,取平均值 21g。
药名 | 用量 | 药性 | 药味 | 归经 | 功效 |
---|---|---|---|---|---|
全蝎 | 6g | 平 | 辛 | 肝 | 息风_止痉_通络_止痛_攻毒_散结 |
皂角刺 | 12g | 温 | 辛 | 肝,胃 | 消肿_托毒_排脓_杀虫 |
猪牙皂 | 6g | 温 | 辛,咸 | 肺,大肠 | 祛痰_开窍_散结_消肿 |
蒺藜 | 22.5g | 微温 | 苦,辛 | 肝 | 平肝_潜阳_疏肝_解郁_活血_祛风_明目_止痒 |
炒槐花 | 22.5g | 微寒 | 苦 | 肝,大肠 | 凉血_止血_清肝_泻火 |
威灵仙 | 21g | 温 | 辛,咸 | 膀胱 | 祛风_除湿_通络_止痛_消鱼鲠 |
苦参 | 6g | 寒 | 苦 | 心,肝,胃,大肠,膀胱 | 清热_燥湿_杀虫_利尿 |
白鲜皮 | 15g | 寒 | 苦 | 胃,脾,膀胱 | 清热_燥湿_祛风_解毒 |
黄柏 | 15g | 寒 | 苦 | 肾,大肠,膀胱 | 清热_燥湿_泻火_解毒_除蒸_疗疮 |
量化方法形式的发展——方药用量的斟酌
注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!
\color{red}\small\text{注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!}
注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!
注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!
\color{red}\small\text{注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!}
注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!
注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!
\color{red}\small\text{注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!}
注意,这只是一个试探,并没有临床的或者现实的经验,仅仅引起一个思考或者启发!!!
详细内容见上一次,这里只列出目录。
方法一:转化为熵函数在有约束条件下的最优化问题
详细内容见上一次,这里只列出目录。
方法二:拆分数的方法与方剂药量配比
拆分数的方法如何应用于方剂药物配比问题上呢?对于含有
Q
Q
Q 味中药的药方,考虑如下函数
y
=
1
(
1
−
ζ
1
)
(
1
−
ζ
2
)
…
(
1
−
ζ
Q
)
=
∏
m
=
1
Q
(
1
−
ζ
m
)
−
1
\displaystyle \begin{array}{lllll} y = \displaystyle \frac{1}{ \left(1-\zeta_{1}\right) \left(1-\zeta_{2}\right) \dots \left(1-\zeta_{Q}\right) } = \displaystyle \prod_{m=1}^{Q} \left(1-\zeta_{m}\right)^{-1} \end{array}
y=(1−ζ1)(1−ζ2)…(1−ζQ)1=m=1∏Q(1−ζm)−1
如果展开
y
y
y 为级数的形式,就可以得到
y
=
1
+
ζ
1
+
⋯
+
ζ
j
1
⏟
1
≤
j
1
≤
Q
+
⋯
+
ζ
Q
⏟
所有的 1 次项
+
ζ
1
ζ
1
+
⋯
+
ζ
j
1
ζ
j
2
⏟
1
≤
j
1
,
j
2
≤
Q
+
⋯
+
ζ
Q
ζ
Q
⏟
所有的 2 次项
+
…
+
ζ
1
…
ζ
1
⏟
一共
k
个
ζ
1
+
⋯
+
ζ
j
1
…
ζ
j
k
⏟
1
≤
j
1
,
…
,
j
k
≤
Q
+
⋯
+
ζ
Q
…
ζ
Q
⏟
一共
k
个
ζ
Q
⏟
所有的
k
次项
+
…
\displaystyle \begin{array}{llllll} y & = & 1 + \underbrace{\zeta_{1} + \dots + \underbrace{\zeta_{j_1}}_{1 \le j_1 \le Q} + \dots + \zeta_{Q}}_{\text{所有的 1 次项}} \\ \\ & + & \underbrace{\zeta_{1} \zeta_{1} + \dots + \underbrace{\zeta_{j_1} \zeta_{j_2}}_{1\le j_1,j_2 \le Q} + \dots + \zeta_{Q} \zeta_{Q}}_{\text{所有的 2 次项}} \\ \\ & + & \dots \\ \\ & + & \underbrace{ \underbrace{ \zeta_{1} \dots \zeta_{1} }_{ 一共 k 个 \zeta_{1} } + \dots + \underbrace{ \zeta_{j_1} \dots \zeta_{j_k} }_{ 1\le j_1,\dots,j_k \le Q} + \dots + \underbrace{ \zeta_{Q} \dots \zeta_{Q} }_{ 一共 k 个 \zeta_{Q} }}_{所有的 k 次项} \\ \\ & + & \dots \\ \end{array}
y=++++1+所有的 1 次项
ζ1+⋯+1≤j1≤Q
ζj1+⋯+ζQ所有的 2 次项
ζ1ζ1+⋯+1≤j1,j2≤Q
ζj1ζj2+⋯+ζQζQ…所有的k次项
一共k个ζ1
ζ1…ζ1+⋯+1≤j1,…,jk≤Q
ζj1…ζjk+⋯+一共k个ζQ
ζQ…ζQ…
其中,所有的
1
1
1 次项表示只用
1
1
1 份药,这份药来自
ζ
j
1
\zeta_{j_1}
ζj1;所有的
2
2
2 次项表示,用
2
2
2 份药,一份来自
ζ
j
1
\zeta_{j_1}
ζj1,一份来自
ζ
j
2
\zeta_{j_2}
ζj2;所有的
k
k
k 次项表示,用
k
k
k 份药,一份来自
ζ
j
1
,
…
,
ζ
j
k
\zeta_{j_1}, \dots, \zeta_{j_k}
ζj1,…,ζjk 各一份,以此类推。从公式中一看到,
ζ
j
p
\zeta_{j_p}
ζjp 与
ζ
j
q
\zeta_{j_q}
ζjq 可以是重复的,或者换句话说,
ζ
j
\zeta_{j}
ζj 的幂次就代表了它在药方中的份数,即配比。
如果这个时候将药物的功效写做药方的功效,进行普通的乘法,就可以得到对应药剂配比下功效的配比。具体来讲就是,对于第
m
m
m 味中药
ζ
m
→
∏
e
∈
第 m 味药的功效
(
ϵ
e
)
P
m
e
\displaystyle \begin{array}{llll} \zeta_{m} \rightarrow \displaystyle \prod_{e \in \text{第 m 味药的功效}} \left(\epsilon_{e}\right)^{P_m^e} \end{array}
ζm→e∈第 m 味药的功效∏(ϵe)Pme
其中,
ϵ
e
\epsilon_{e}
ϵe 表示药方中的第
e
e
e 个功效,
P
m
e
P_m^e
Pme 为第二回第二次中的功效矩阵。有了上面的准备,只要将对应的药物进行普通乘法,就可以得到对应的功效配比。例如,两份全蝎和一份威灵仙,
ζ
全蝎
2
×
ζ
威灵仙
=
(
ϵ
息风
)
2
6
(
ϵ
止痉
)
2
6
(
ϵ
通络
)
2
6
(
ϵ
止痛
)
2
6
(
ϵ
攻毒
)
2
6
(
ϵ
散结
)
2
6
s
p
c
×
(
ϵ
祛风
)
1
5
(
ϵ
除湿
)
1
5
(
ϵ
通络
)
1
5
(
ϵ
止痛
)
1
5
(
ϵ
消鱼鲠
)
1
5
=
(
ϵ
息风
)
1
3
(
ϵ
止痉
)
1
3
(
ϵ
通络
)
8
15
(
ϵ
止痛
)
8
15
(
ϵ
攻毒
)
1
3
(
ϵ
散结
)
1
3
(
ϵ
祛风
)
1
5
(
ϵ
除湿
)
1
5
(
ϵ
消鱼鲠
)
1
5
\begin{array}{llll} \displaystyle \zeta_{\displaystyle \tiny 全蝎}^{2} \times \zeta_{\displaystyle \tiny 威灵仙} & = & \left(\displaystyle \epsilon_{\tiny \text{息风}}\right)^{\tiny \frac{2}{6}} \left(\displaystyle \epsilon_{\tiny \text{止痉}}\right)^{\tiny \frac{2}{6}} \left(\displaystyle \epsilon_{\tiny \text{通络}}\right)^{\tiny \frac{2}{6}} \left(\displaystyle \epsilon_{\tiny \text{止痛}}\right)^{\tiny \frac{2}{6}} \left(\displaystyle \epsilon_{\tiny \text{攻毒}}\right)^{\tiny \frac{2}{6}} \left(\displaystyle \epsilon_{\tiny \text{散结}}\right)^{\tiny \frac{2}{6}} \\ \\ & & \phantom{spc} \times \left(\displaystyle \epsilon_{\tiny \text{祛风}}\right)^{\tiny \frac{1}{5}} \left(\displaystyle \epsilon_{\tiny \text{除湿}}\right)^{\tiny \frac{1}{5}} \left(\displaystyle \epsilon_{\tiny \text{通络}}\right)^{\tiny \frac{1}{5}} \left(\displaystyle \epsilon_{\tiny \text{止痛}}\right)^{\tiny \frac{1}{5}} \left(\displaystyle \epsilon_{\tiny \text{消鱼鲠}}\right)^{\tiny \frac{1}{5}} \\ \\ & = & \left(\displaystyle \epsilon_{\tiny \text{息风}}\right)^{\tiny \frac{1}{3}} \left(\displaystyle \epsilon_{\tiny \text{止痉}}\right)^{\tiny \frac{1}{3}} \left(\displaystyle \epsilon_{\tiny \text{通络}}\right)^{\tiny \frac{8}{15}} \left(\displaystyle \epsilon_{\tiny \text{止痛}}\right)^{\tiny \frac{8}{15}} \left(\displaystyle \epsilon_{\tiny \text{攻毒}}\right)^{\tiny \frac{1}{3}} \left(\displaystyle \epsilon_{\tiny \text{散结}}\right)^{\tiny \frac{1}{3}} \left(\displaystyle \epsilon_{\tiny \text{祛风}}\right)^{\tiny \frac{1}{5}} \left(\displaystyle \epsilon_{\tiny \text{除湿}}\right)^{\tiny \frac{1}{5}} \left(\displaystyle \epsilon_{\tiny \text{消鱼鲠}}\right)^{\tiny \frac{1}{5}} \\ \end{array}
ζ全蝎2×ζ威灵仙==(ϵ息风)62(ϵ止痉)62(ϵ通络)62(ϵ止痛)62(ϵ攻毒)62(ϵ散结)62spc×(ϵ祛风)51(ϵ除湿)51(ϵ通络)51(ϵ止痛)51(ϵ消鱼鲠)51(ϵ息风)31(ϵ止痉)31(ϵ通络)158(ϵ止痛)158(ϵ攻毒)31(ϵ散结)31(ϵ祛风)51(ϵ除湿)51(ϵ消鱼鲠)51
它的意思是,这个组合息风的占比为
1
/
3
1/3
1/3, 止痉的占比为
1
/
3
1/3
1/3,通络的占比结合了二者之和,为
8
/
15
8/15
8/15,以此类推。
函数 y = ∏ m = 1 Q ( 1 − ζ m ) − 1 y=\prod_{m=1}^{Q} \left(1-\zeta_{m}\right)^{-1} y=∏m=1Q(1−ζm)−1 的幂级数展开涵盖了所有可能的组合。未知数 ζ \zeta ζ 的总幂次表示用药的总份数。一次幂项表示只选取1份药的功效,也只能选择一种药;二次幂项表示只选取2份药的功效,这两份药可能是1种药,也可能是2种药。每一个未知数 ζ m \zeta_{m} ζm 自己的幂次,则表示自己在总份数中所占的份数。随着幂次的升高,用药种类和药量搭配的组合会迅速变大,不过随着份数越来越细,所以各味药剂的配比也会越来越细致。
再换一个角度来看
y
y
y。先考虑其中的因子
1
/
(
1
−
ζ
m
)
1 / \left( 1- \zeta_{m} \right)
1/(1−ζm) 的级数
1
1
−
ζ
m
=
1
+
ζ
m
+
ζ
m
2
+
ζ
m
3
+
⋯
+
ζ
m
k
+
…
\begin{array}{lllll} \displaystyle \frac{1}{1- \zeta_{m}} = 1 + \zeta_{m} + \zeta_{m}^{2} + \zeta_{m}^{3} + \dots + \zeta_{m}^{k} + \dots \\ \end{array}
1−ζm1=1+ζm+ζm2+ζm3+⋯+ζmk+…
它可以看成是不用第
m
m
m 味药,使用
1
1
1 份第
m
m
m 味药,使用
2
2
2 份第
m
m
m 味药,使用
3
3
3 份第
m
m
m 味药,
…
\dots
…,使用
k
k
k 份第
m
m
m 味药,以此类推。所以,函数
y
y
y 的级数为
y
=
1
1
−
ζ
1
…
1
1
−
ζ
Q
=
(
1
+
ζ
1
+
ζ
1
2
+
ζ
1
3
+
⋯
+
ζ
1
k
+
…
)
…
(
1
+
ζ
Q
+
ζ
Q
2
+
ζ
Q
3
+
⋯
+
ζ
Q
k
+
…
)
=
1
+
⋯
+
(
ζ
1
j
1
…
ζ
Q
j
Q
)
+
…
\begin{array}{llllll} y & = & \displaystyle \frac{1}{1-\zeta_{1}} \dots \frac{1}{1-\zeta_{Q}} \\ \\ & = & \left( 1 + \zeta_{1} + \zeta_{1}^{2} + \zeta_{1}^{3} + \dots + \zeta_{1}^{k} + \dots \right) \dots \left( 1 + \zeta_{Q} + \zeta_{Q}^{2} + \zeta_{Q}^{3} + \dots + \zeta_{Q}^{k} + \dots \right) \\ \\ & = & 1 + \dots + \left( \zeta_{1}^{j_1} \dots \zeta_{Q}^{j_Q} \right) + \dots \end{array}
y===1−ζ11…1−ζQ1(1+ζ1+ζ12+ζ13+⋯+ζ1k+…)…(1+ζQ+ζQ2+ζQ3+⋯+ζQk+…)1+⋯+(ζ1j1…ζQjQ)+…
由此可以看出,
y
y
y 的每一项都表示使用第
1
1
1 味药
j
1
j_1
j1 份,
…
\dots
…,第
Q
Q
Q 味药
j
Q
j_Q
jQ 份。
y
y
y 就是在限定的
Q
Q
Q 味药中,所有可能的配比的总和。
这一段的代码本来打算忠实于前面的公式编写,可是 SymPy 包可以实现符号运算,可是它展开级数的表现太慢了。不过,前面说过,实际上就是给定的总份数下,找到药方的药物占各种可能份数的全组合。所以,这里的思路是,在给定总份数下,给出所有可能的拆分数。然后,根据拆分数的个数,选出药的味数。例如,全虫方中一共9味药,如果药方总质量平均分配成20份,其中的一个拆分数是 12 + 3 + 2 + 1 + 1 + 1 = 20 12 + 3 + 2 + 1 + 1 + 1= 20 12+3+2+1+1+1=20,那么这组拆分数就是代表从原方的 9 9 9 味药中选取 6 6 6 味,每一味的占比分别是 12 , 3 , 2 , 1 , 1 , 1 12, 3, 2, 1, 1, 1 12,3,2,1,1,1;如果某组拆分数为 7 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 = 20 7 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 = 20 7+3+2+2+2+1+1+1+1=20 就表示原方的 9 9 9 味药同时取用,每味药的占比分别为 7 , 3 , 2 , 2 , 2 , 1 , 1 , 1 , 1 7, 3, 2, 2, 2, 1, 1, 1, 1 7,3,2,2,2,1,1,1,1;如果某组拆分数为 5 + 3 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 = 20 5 + 3 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1= 20 5+3+3+2+2+1+1+1+1+1=20,这组拆分数是 10 10 10 个数组成的,而原方中只有 9 9 9 味药,所以这组拆分数不是可能的拆分,不被允许。同时,考虑到药方中份数表示占比,所以会除以最大公约数。例如, 20 20 20 拆分为 10 , 4 , 6 10, 4, 6 10,4,6 时,会被除以最大公约数 2 2 2,得到 5 , 2 , 3 5, 2, 3 5,2,3。最后,给出从药方中选出的药的全排列,以字典的方式,搭配对应的那组除以过最大公约数拆分数。之所以,以字典的方式,是因为 python 中关键字和数值相同的字典,被看做相同的字典。例如,{“黄芪”: 2, “白术”: 1, “防风”: 1} 与 {“黄芪”: 2, “防风”: 1, “白术”: 1},虽然防风和白术的顺序调整了,但是它们是相同的字典。
# 函数 __partitions__ 为引用别人的代码
# Chris Smith, Tim Peters, https://code.activestate.com/recipes/218332-generator-for-integer-partitions/
# 给出所有整数 n 的拆分数,其中每个拆分数的不大于 k,也可以没有这个要求。
def __partitions__(n, k=None):
"""Generate all partitions of integer n (>= 0) using integers no
greater than k (default, None, allows the partition to contain n).
Each partition is represented as a multiset, i.e. a dictionary
mapping an integer to the number of copies of that integer in
the partition. For example, the partitions of 4 are {4: 1},
{3: 1, 1: 1}, {2: 2}, {2: 1, 1: 2}, and {1: 4} corresponding to
[4], [1, 3], [2, 2], [1, 1, 2] and [1, 1, 1, 1], respectively.
In general, sum(k * v for k, v in a_partition.iteritems()) == n, and
len(a_partition) is never larger than about sqrt(2*n).
Note that the _same_ dictionary object is returned each time.
This is for speed: generating each partition goes quickly,
taking constant time independent of n. If you want to build a list
of returned values then use .copy() to get copies of the returned
values:
>>> p_all = []
>>> for p in partitions(6, 2):
... p_all.append(p.copy())
...
>>> print p_all
[{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]
Reference
---------
Modified from Tim Peter's posting to accomodate a k value:
http://code.activestate.com/recipes/218332/
"""
if n < 0:
raise ValueError("n must be >= 0")
if n == 0:
yield {}
return
if k is None or k > n:
k = n
q, r = divmod(n, k)
ms = {k : q}
keys = [k]
if r:
ms[r] = 1
keys.append(r)
yield ms
while keys != [1]:
# Reuse any 1's.
if keys[-1] == 1:
del keys[-1]
reuse = ms.pop(1)
else:
reuse = 0
# Let i be the smallest key larger than 1. Reuse one
# instance of i.
i = keys[-1]
newcount = ms[i] = ms[i] - 1
reuse += i
if newcount == 0:
del keys[-1], ms[i]
# Break the remainder into pieces of size i-1.
i -= 1
q, r = divmod(reuse, i)
ms[i] = q
keys.append(i)
if r:
ms[r] = 1
keys.append(r)
yield ms
# 根据上面的函数,得到一个整数拆分后的 list
def partitions(n_, k_=None) -> list:
p_all_ = list()
for p_ in __partitions__(n_, k_):
p_all_.append(p_.copy())
return p_all_
# 求出一组数的最大公约数
import sympy as sym
def gcd_of_a_list_or_tuple(vars_):
if len(vars_) <= 1:
return 1
else:
code_ = "sym.igcd(vars_[0]"
for i_ in range(1, len(vars_)):
code_= code_ + ', vars_[' + str(i_) + ']'
code_ = code_ + ')'
return eval(code_)
# 给出药方 medicines 总共平均分成 shares 份,所有可能的分法。
from itertools import permutations
def all_permitted_proportions(medicines, shares) -> list:
# 得到 shares 份的所有拆分数
partition = partitions(shares)
partition = [list(partition[p].items()) for p in range(0, len(partition))]
# 选出拆分数的个数不多余药方中药材味数的情况
ks = np.array([sum([partition[p][i][1] for i in range(0, len(partition[p]))]) for p in range(0, len(partition))])
positions = np.where(ks <= len(medicines))
partition = list(np.array(partition, dtype=list)[positions])
ks = list(ks[positions])
ks = [int(ks[i]) for i in range(0, len(ks))]
# 按照选中的药材味数排序
partition.sort(key=lambda x: sum([x[i][1] for i in range(0, len(x))]))
ks.sort()
all_proportions = list() # 用于记录所有可能的配比
for p in range(0, len(partition)):
proportion = list()
for i in range(0, len(partition[p])):
proportion.extend([partition[p][i][0] for j in range(0, partition[p][i][1])])
# 求出最大公约数,并除之
gcd = gcd_of_a_list_or_tuple(proportion)
proportion = [int(proportion[i] / gcd) for i in range(0, len(proportion))]
proportion = tuple(proportion)
# 求出从药方 medicines 中选出 ks[p] 味药的全排列
pmtt = list(permutations(medicines, ks[p]))
for i in range(0, len(pmtt)):
proportion_dict = dict() #
for j in range(0, len(pmtt[i])):
proportion_dict[pmtt[i][j]] = proportion[j]
complement = list(set(medicines).symmetric_difference(pmtt[i]))
for c in range(0, len(complement)):
proportion_dict[complement[c]] = 0
if proportion_dict not in pei_wu:
all_proportions.append(proportion_dict)
# 按照药材名排序
for p in range(0, len(all_proportions)):
all_proportions[p] = list(all_proportions[p].items())
all_proportions[p].sort(key= lambda x: x[0])
return all_proportions
# end
在运行代码之前,首先对药方所有可能的情况的数量级做一个大致估计。影响排列情况多少的,最主要的是两个因素。一个是药方药材种类的多少,一个是拆分数的个数。药方总量分的份数越多,拆分数的情况就越多。药方药材味数越多,排列就越多。尽管,在某些拆分下,某些药材占有的份数相同,所以有些排列会重复。如果忽略这些重复,仅粗略地估计一下所有可能的情况的多少,可以用下面的方法进行估计。根据国家中医药管理局2007年3月12日印发的《医院中药饮片管理规范》第三十一条规定,中药饮片调配每剂重量误差应当在±5%以内。换句话说,一剂药重量误差 ±5% 可以认为效果一样,这样来看,一剂药重量最大相差为 10%。如果将药的总量分成 20 份,这样每份占比就是 5%,拆分数变动一次至少一味药少 5%,另一味药多 5%,这跟总量误差10%相比,可以看做是药方上的一个明显的调整。所以,在份20份的情况下,在忽略一些重复的排列的情况下,可能出现的情况随着药方药材味数的增长情况,如下表所示。
方中药材的味数 | 可能的配比情况(总量 20 等分,粗略估计) | 读数 | 对应书籍 |
---|---|---|---|
1 | 1 | 一般中药材的手册、词典、伤寒杂病论(白云阁藏本,16 首) | |
2 | 22 | 张锡纯对药、施今墨对药、伤寒杂病论(白云阁藏本,39 首) | |
3 | 261 | 张锡纯对药、施今墨对药、伤寒杂病论(白云阁藏本,45 首) | |
4 | 2452 | 施今墨对药、伤寒杂病论(白云阁藏本,79 首) | |
5 | 19945 | 1 万 9 千 | 伤寒杂病论(白云阁藏本,56 首) |
6 | 152586 | 15 万 | 伤寒杂病论(白云阁藏本,37 首) |
7 | 1139677 | 113 万 | 伤寒杂病论(白云阁藏本,33 首) |
8 | 8626696 | 862 万 | 伤寒杂病论(白云阁藏本,9 首) |
9 | 66799377 | 6679 万 | 伤寒杂病论(白云阁藏本,8 首) |
10 | 541461790 | 5 亿 4146 万 | 伤寒杂病论(白云阁藏本,4 首) |
11 | 4588976821 | 45 亿 8897 万 | |
12 | 41071200732 | 410 亿 7120 万 | 伤寒杂病论(白云阁藏本,2 首) |
13 | 385871967481 | 3858 亿 7196 万 | |
14 | 3863390901202 | 3,8633 亿 9090 万 | |
15 | 40352035350285 | 40,3520 亿 3535 万 |
从表格中可以看到,药方可能的配比情况,随着方中药材味数的增加而极具膨胀。这意味着,多味数大药方的不确定性也是极具膨胀的。所以,谨慎地使用大药方是确保药效的重要手段。从伤寒杂病论的药方味数统计来看,超过 7 味药的药方急剧减少。伤寒杂病论中的药方,经历代医家千年反复验证大多屡试不爽,这也在一定程度上说明,药方味数不宜过多。
这次是代码太多了,网页编辑卡得要命,见下次。
方法一与方法二各自的特点与关系
这次是代码太多了,网页编辑卡得要命,见下次。
方法一与方法二的局限性
- 计算量的局限性
- 主要功能也存在区别