腰椎间盘突出症与站姿、坐姿、睡姿

本文详细阐述了正确的站姿、坐姿和睡姿对于预防腰椎间盘突出的重要性,提供了具体的方法和建议,帮助读者在日常生活中采取有效的措施,避免因姿势不当造成的伤害。

http://www.op90.com/yaojianpantuchu/yaojianpantuchu-0026.html

A、站姿:正确的站立姿势是膝关节微屈,自然收腹,挺胸抬头,使身体的重心从耳后的乳突向下经髋关节的中心横轴、第二骶骨前面,到膝关节前部和踝关节前方,落在承重的足上。此时人体的重力线正好通过腰椎椎体或椎间盘后部,可有效地防止髓核再次突出。站立姿势不良,特别是脊柱不正,会造成椎间盘受力不均匀,是造成椎间盘突(膨)出的隐伏根源。正确的站立姿势应该是两眼平视,下颌稍内收,胸部挺起,腰部平直,小腿微收,两腿直立,两足距离约与骨盆宽度相同,这样整个骨盆就会向前倾,使全身重力均匀地从脊柱、骨盆传向下肢,再由两下肢传至足,以成为真正的“脚踏实地”。此时人体的重力线正好通过腰椎椎体或椎间盘后部,可有效地防止髓核次突出。
劳动时应采取的站立体位是:膝关节微屈,臀大肌轻轻收缩,自然收缩腹肌,这样可使骨盆轻微后倾,腰椎轻度变直,减少腰骶角的角度,增加脊柱支撑力,减轻椎间盘的负担。
长时间一个姿势站立是不可能的,可以改为“稍息”的姿势,即一侧脚向前跨半步,让体重放在一侧下肢上,而使另一侧下肢稍加休息,两侧交替。站立不应太久,应适当进行原地活动,尤其是腰背部活动,以解除腰背肌肉疲劳。一旦发现不良站立姿势应及时纠正,良好的站立姿势可在一定程度上避免髓核再次突出。

   B、坐姿:正确的坐姿是上身挺直,收腹,下颌微收,两下肢并拢。如有可能,最好在双脚下垫一踏脚或脚凳,使膝关节略微高出髋部。如坐在有靠背的椅子上,则应在上述姿势的基础上尽量将腰背紧贴并倚靠椅背,这样腰骶部的肌肉不会太疲劳。另外,不宜坐低于20cm的矮凳,应坐有靠背的椅子,这样可以承担躯体的部分重量,使腰背部相对处于松弛状态,减少腰背劳损的机会。

   C、睡姿:人的睡眠姿势大致可分为仰卧、侧卧和俯卧三种方式。仰卧时,只要卧具合适,四肢保持自然伸展,脊柱曲度变化不大。侧卧一般不必过于讲究左侧还是右侧卧位,因为人在睡眠中为了求得较舒适的体位,总要不断翻身,一夜约 20-45 次。俯卧位时胸部受压,腰椎前凸增大,易产生不适感。所以,正确的睡眠体位应该是仰卧和侧卧位。有条件的患者,仰卧位时应在双下肢下方垫一软枕,以便双髋及双膝微屈,全身肌肉放松,椎间盘压力降低,减小椎间盘后突的倾向,同时也降低髂腰及坐骨神经的张力,这样能有效地防止腰椎间盘突出症的复发,是腰椎间盘突出症患者的最佳体位,侧卧一般不必过于讲究右侧还是左侧卧位,以人体感觉舒适为宜。

腰椎间盘突出图片:避免腰椎间盘突出的正确坐姿[图片]

### YOLOv8 实现坐姿站姿分析教程 #### 了解YOLOv8及其优势 YOLOv8 是一种先进且高效的目标检测框架,在速度和准确性方面表现出色。该版本集成了最新的技术改进,使得模型能够提供更加优异的性能表现[^1]。 #### 准备环境安装依赖项 为了顺利运行基于YOLOv8的姿态检测程序,需先搭建合适的开发环境并安装必要的库文件。具体操作如下: - 安装Python 3.x 版本; - 使用pip工具安装`ultralytics`包以及其他所需的第三方库; ```bash pip install ultralytics opencv-python numpy matplotlib ``` #### 下载预训练模型及配置文件 访问官方仓库获取已训练好的姿态估计模型权重以及相应的配置参数文件。可以从项目地址下载所需资源。 #### 加载模型并设置输入图像路径 编写一段简单的Python脚本来加载YOLOv8模型,并指定待处理图片的位置作为输入数据源。 ```python from ultralytics import YOLO model = YOLO('path/to/yolov8_pose.pt') # 替换为实际保存位置 image_path = 'input_image.jpg' results = model(image_path) ``` #### 解析输出结果以区分不同姿势类别 根据返回的结果对象提取关键点坐标信息,并据此判断人物当前所处的状态——即是否处于坐着或站着的情形之中。可以定义辅助函数来进行分类判定逻辑编码。 ```python def classify_posture(keypoints): """Based on keypoints to determine posture type.""" if all([keypoints[i][1] < keypoints[j][1] for i, j in [(11, 13), (12, 14)]]) and \ abs(keypoints[11][0]-keypoints[12][0])/abs(keypoints[11][1]-keypoints[12][1])<0.5: return "Sitting" elif any([keypoints[i][1]>keypoints[j][1] for i,j in [(11, 13),(12, 14)]]): return "Standing" else: return "Unknown" for result in results: kps = result.keypoints.data.cpu().numpy()[0] print(f'Posture detected: {classify_posture(kps)}') ``` 此段代码假设左肩(11),右肩(12),左膝(13),右膝(14)四个关节已经按照COCO格式被正确标注出来。如果这些条件满足,则可以通过比较它们之间的相对高度关系来推断出人的大致体态特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值